POOR LEGIBILITY

ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL

88097045

Woodward-Clyde Consultants

SFUND RECORDS CTR 1638-00002

SITE CHARACTERIZATION REPORT VERDESE CARTER PARK

OAKLAND, CALIFORNIA

Prepared for

City of Oakland City Attorney's Office 505 14th Street, 12th Floor Oakland, CA 94612 August 19, 1993

Prepared by

Woodward-Clyde Consultants 500 12th Street, Suite 100 Oakland, CA 94607-4014

Engineering & sciences applied to the earth & its environment

August 19, 1993 93C0243A

Ms. Vivian O'Neal, Esq. City of Oakland City Attorney's Office 505 14th Avenue, 12th Floor Oakland, CA 94612

Re: Site Characterization Report

Verdese Carter Park Site Characterization Project

98th and Bancroft Avenues, Oakland

Dear Ms. O'Neal:

Woodward-Clyde Consultants (WCC) is pleased to submit this report of our site characterization of Verdese Carter Park. The purpose of this investigation was to identify the general distribution of soil contamination, if any, in the shallow soil zone at the park.

A draft report was submitted to you on July 19. This final report incorporates the comments of yourself and City staff to the draft, as well as comments by the Alameda County Department of Environmental Health. This report also includes the results of additional sampling of the precipitate material found in some of the pavement cracks in the play courts area of the park.

It is a pleasure to be of service to the City. Please call me at 874-3288 if you have any questions.

Sincerely,

Michael McGuire, P.E.

Project Manager

Enclosure

Q:\93\15810.1(93C0243A)\1

M0820930838

1	(FOR RE-ACCESSIONS, COMPLETE #7 THRU #9) Does this project require special handling according to NEESA Levels C, D, AFOEHL	YES	NO					
1	or CI P protocols?							
	If yes, complete a) thru c) a) Cooler temperature							
	b) all sample aliquoted: yes / no / n/a							
	c) LOT #'s:	YES	003					
2	Are custody seals present on cooler?	YES	NO					
1	If yes, are seals intact?	YES	MÓ					
3	Are custody seals present on sample containers?							
Ĭ		YES	NO					
	If yes, are seals intact?	YES	NO					
4	Is there a Chain-Of-Custody (COC)*?	YES:	NO					
5	Is the COC* complete? Relinquished: yes/no Requested analysis: yes/no							
	Relinquished: yes/no nequestes that seemples received?	YES	NO					
6	Is the COC in agreement with the samples received? # Samples: 4/2s/no Sample ID's: 4/2s/no							
	# Samples: yes/no Sample ID S. yes/no Matrix: yes/no # containers: yes/no	150	NO					
	Are the samples preserved correctly?	DES	 					
7	Is there enough sample for all the requested analyses?	YES	NO					
8	dea the regulacted analyses:							
9								
10	Were the samples received cold?							
11	Were all sample containers received intact (ie. not broken, leaking, etc.)?							
12	1 a sequiring no neadspace, Headspace	YES	DIFA					
13	Are there special comments on the Chain of Custody which require client contact?	YES	NO					
14	If yes, was ATI Project Manager notified?	111 = =	ce.)					
Desc	ribe "no" items: 5 K 15 1/8 & Fri VIII 1 1 21.5021							
	West centacted? yes / DO							
Was client contacted? yes / no If yes, Date: Name of Person contacted:								
If ye	s, Date: Name of Ferson Contactor.	•						
Des	cribe actions taken or client instructions:							
			-					

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	1-1
	1.1 PURPOSE 1.2 PROJECT BACKGROUND	1-1 1-1
	1.2.1 Site History1.2.2 Scope of Site Characterization	1-1 1-3
	1.3 REPORT ORGANIZATION	1-4
2.0	SITE CHARACTERIZATION ACTIVITIES	2-1
	2.1 SITE HISTORY RESEARCH2.2 INITIAL SOIL INVESTIGATION2.3 SUPPLEMENTAL SOIL INVESTIGATION	2-1 2-1 2-4
3.0	PHYSICAL SITE CHARACTERISTICS	3-1
	3.1 PRESENT SITE DEVELOPMENT3.2 SOILS3.3 GROUNDWATER	3-1 3-1 3-2
4.0	NATURE AND EXTENT OF CONTAMINATION	4-1
	 4.1 BACKGROUND LEVELS ESTIMATION 4.2 QA/QC REVIEW SUMMARY 4.3 PESTICIDES AND HERBICIDES 4.4 METALS 	4-1 4-2 4-2 4-2
	4.4.1 Arsenic 4.4.2 Lead 4.4.3 Zinc	4-3 4-4 4-6
	4.5 pH4.6 DATA CORRELATIONS4.7 GENERAL CONTAMINATION DISTRIBUTION	4-7 4-8 4-8
5.0	CONTAMINANT FATE AND TRANSPORT	5-1

TABLE OF CONTENTS (Concluded)

Section			Page
6.0	CO	NCLUSIONS AND RECOMMENDATIONS	6-1
		SUMMARY OF FINDINGS RECOMMENDATIONS FOR ADDITIONAL INVESTIGATION	6-1
		ACTIVITIES PLANNED REMEDIAL ACTIVITIES	6-2 6-3
7.0	LIM	IITATIONS AND CERTIFICATION	7-3
LIST O	F TA	<u>BLES</u>	٠
TABLE TABLE TABLE TABLE	2 3	SUMMARY OF RESULTS: pH AND CAM 17 METALS SUMMARY OF RESULTS: pH AND ARSENIC, LEAD, AND ZING SUMMARY OF RESULTS: SOLUBLE METALS SUMMARY OF RESULTS: SULFIDE AND SULFATE	С
LIST O	F FIC	<u>GURES</u>	
FIGUR FIGUR FIGUR	E 2	SITE AND SOIL SAMPLE LOCATION PLAN PAVEMENT CRACK PRECIPITATE SAMPLE LOCATION PLAN SUMMARY OF ELEVATED SOIL ARSENIC AND LEAD CONCENTRATIONS	
FIGUR	E 4	SUMMARY OF PRECIPITATE pH, ARSENIC, LEAD, AND ZINC CONCENTRATIONS	
FIGUR FIGUR FIGUR FIGUR	E 6 E 7 E 8	LOCATIONS OF CROSS-SECTIONS CROSS-SECTION AA' CROSS-SECTION BB' CROSS-SECTION CC' CROSS-SECTION DD'	
PLATE	1	SAMPLE LOCATION PLAN FOR PREVIOUS INVESTIGATIONS	
LIST C	F AP	PENDIXES	
		A BORING LOGS B ANALYTICAL LABORATORY DATA	

QA/QC REVIEW

LABORATORY REPORTS

1.1 PURPOSE

Woodward-Clyde Consultants (WCC) was retained by the City of Oakland to conduct a site characterization at the Verdese Carter Park site in Oakland, California. The site characterization generally consisted of a sampling and analysis program for the shallow soil zone beneath the site. Recent observations at the Park have raised concerns that lead or other chemicals possibly remaining in soils may present environmental and health threats. In March of 1993, citizens reported observing a yellow-white precipitate substance in cracks in the asphalt basketball court area.

In April 1993, because of recent, heightened concerns regarding apparent or suspected conditions at the park, the city requested WCC to plan and initiate an investigation of potential soil contamination at the park. This investigation was comprehensive in that it addressed the entire park area, and not just the portion formerly occupied by the battery factory.

The scope of work was conducted for the City Attorney in accordance with our proposals of May 19 and June 21, 1993 as subsequently approved and modified.

1.2 PROJECT BACKGROUND

1.2.1 Site History

Verdese Carter Park (the park) is located in Oakland, California between 98th and 96th Avenues, and Bancroft Avenue and Sunnyside Street. The park covers approximately 3 acres. Low knolls, up to about 6 feet high, of grass-covered and tree-planted fill generally line the north, east, and southern perimeters of the park. The south side of the park is bordered by a gravel covered, undeveloped strip of land approximately 40 feet wide along the 98th Avenue frontage.

The park currently consists of a grassy field area on the southern side of the park, while the northern side of the park contains two basketball courts, a children's sandbox/playground area, and a community center/maintenance structure. The general layout of the park is presented on Figure 1.

The southern half of Verdese Carter Park, i.e., fronting on 98th Avenue, was occupied by a wet cell battery factory from at least 1912 (the date of the earliest Sanborn Map of the site) until it was demolished in 1977 for construction of the park. Soil contaminants typically associated with wet cell battery manufacturing include acids, sulphur, lead, and to a lesser extent, other metals such as arsenic and zinc.

Aerial photos indicate that the factory ceased operations sometime between 1973 and 1975. For most of its operational life, the factory completely occupied the south half of the block, most of the footprint of the factory being located on a concrete slab floor. Sanborn maps and aerial photos show a variety of operation areas of the factory, including offices along the 98th Avenue frontage, loading facilities including a rail spur along Bancroft Avenue, sulfuric acid aboveground storage tanks at various locations but concentrated near the northeast corner of the factory area along Bancroft Avenue, and drum storage areas along the north border of the property, i.e., midway through the present park site.

The northern half of the park, i.e., fronting on 96th Avenue, was occupied by a commercial greenhouse nursery from at least 1912 until sometime between 1968 and 1973, according to aerial photos. Other greenhouse nurseries were also located in the neighborhood. Reportedly, the nursery operations at the park site were devoted to raising roses, and did not use pesticides other than nicotine. Soil contaminants that may be associated with commercial nursery operations include pesticides, herbicides, and fertilizer components, including associated component metals such as arsenic and zinc, and sulphur. A 1973 aerial photo of the site after the greenhouses were removed, shows drum storage surface scars on the ground near the battery factory area. This and the presence of parked automobiles on the former nursery area near the battery factory fence suggests that portions of the nursery area may have been used for activities related to the battery factory after the nursery ceased operation.

Construction plans for the park indicate that the landscaped knolls were to be built at least partially by cut and fill earthwork on the site, i.e., by excavating soil from one part of the site

and disposing it at another. The grading plans and specifications indicate that reuse onsite of strongly acidic, yellow stained soil underlying the battery factory was not allowed unless buried at depth to protect plant growth.

Several soil sampling and analysis programs were performed at the former battery factory area in the 1970's to determine concentrations of lead in soil. Sampling was conducted by the City of Oakland (City), Alameda County Health Department (County), the California Department of Health Services (DHS), the University of California at Berkeley (UC), and by a private concerned citizens group. Elevated lead concentrations were measured in shallow soil samples collected in 1978 prior to the removal of contaminated soil discussed below. The approximate locations of these sampling activities are shown on Plate 1.

The City of Oakland (City) acquired the two adjacent properties circa 1975 and converted the site to a park in 1978. After acquisition of the land now occupied by the Park the City reportedly removed several thousand cubic yards of lead-contaminated soil from the site. In 1978, under the supervision of DHS and the County, approximately 1,700 yards of lead-contaminated soils located previously beneath the floor slab of the battery factory were reportedly removed to a depth of 12 inches, and replaced with 18 inches of clean soil. The approximate reported limits of the 1978 removal are indicated on Plate 1.

Recent observations at the Park have raised concerns that lead or other chemicals possibly remaining in soils may present environmental and health threats. In March of 1993, citizens reported observing a yellow-white precipitate substance in cracks in the asphalt basketball court area.

1.2.2 Scope of Site Characterization

The site characterization activities were performed to provide a more complete characterization of potential contamination in soils at Verdese Carter Park. Specific objectives of this investigation included:

• Investigate potentially elevated metals and acid concentrations in shallow soils and, if elevated metals concentrations are observed, initially define the vertical and lateral extent of contamination and apparent causes.

• Provide a screening-level investigation of shallow native soils for pesticides and herbicides, based on historic usage of the western portion of the site as a nursery.

1.3 REPORT ORGANIZATION

Section 2 of this report describes the site characterization activities that were conducted for this investigation, including site history research, and initial and supplemental soil sampling and analysis programs. Section 3 describes the physical characteristics of the site, including geotechnical characteristics relevant to this investigation. Section 4 discusses the nature and extent of contamination, including estimation of background concentrations, and a summary of the analytical data quality assurance/quality control (QA/QC) review. Section 5 presents a brief summary of the contaminant fate and transport characteristics of the site. Section 6 presents conclusions and recommendations including a summary of planned remedial activities.

2.1 SITE HISTORY RESEARCH

The site history research included review of City files regarding the construction and operation of the park, including design plans, review of archived aerial photos possessed by Pacific Aerial Surveys in Oakland, and review of historic Sanborn map data at the Bancroft Library, University of California at Berkeley, and from City sources.

2.2 INITIAL SOIL INVESTIGATION

The initial soil investigation was conducted in substantial accordance with the "Initial Soil Investigation Work Plan," dated April 29, 1993 and subsequently reviewed and approved by the Alameda County Department of Environmental Health (ACDEH).

For the purposes of this investigation, the park was divided into two areas, as indicated on Figure 1. The areas are distinguished from each other based primarily on historical usage and, consequently, potential contaminants of concern.

The southern portion of the park was the former site of a wet-cell battery factory and is referred to as the 'Battery Factory Area'. Potential contaminants/parameters of concern in this area included metals and pH.

The northern portion of the park is the site of a former nursery, and was referred to as the 'Nursery Area'. Potential contaminants/parameters of concern in this area included metals and pH (as a result of proximity to the former battery factory), pesticides and herbicides (the latter two potentially resulting from activities at the former nursery).

Twelve soil borings were advanced in the Nursery Area as shown on Figure 1. While some of the proposed boring locations within the Nursery Area were selected to provide general area coverage, WCB-2, -3, -5, and -9 were located in the area where a precipitate-like substance was observed in cracks in the basketball court pavement. WCB-6 and -7 were

specifically located in the sandbox area; a high use area for children. These two sampling locations were chosen because children are particularly sensitive potential receptors for contaminants, and the area may also serve as a collection point for possible upwelling or "wicking" of subsurface contamination due to the sandbox area's reportedly poor drainage.

Eight soil borings were advanced in the Battery Factory Area as shown on Figure 1. The boring locations within the Battery Factory Area, i.e., WCB-13 through -20, were selected in consideration of past and current site use, the results of previous sampling, and to provide appropriate area coverage. In terms of area coverage, the boring locations were biased away from the frontage along 98th Avenue, as Sanborn Map data shows that this area was occupied by "low-threat" office areas of the battery factory. The specific rationale for individual boring locations was:

WCB-13	located in the barbecue area, a high-use area of the park for potential
	human receptors;

WCB-14 located in an area that Sanborn Map data indicates as being formerly occupied by aboveground acid storage tanks, and located near homeplate at the baseball diamond, a high use area of the park for potential human receptors;

WCB-16 located where previous surface soil sampling detected a total lead concentration of 96,000 mg/kg, the highest ever detected at the site. The sampled soil was later removed, but this boring was proposed to confirm that the 1978 excavation was sufficiently deep; and

WCB-15 located to provide general area coverage.

WCB-17 to 20 located to provide general area coverage.

Soil samples were collected from each boring at one depth within the fill material and at the following depth intervals beneath the fill soil placed for development of the park: 0.5-1.0 ft, 2.0-2.5 ft, 5.0-5.5 ft, 7.0-7.5 ft, and 10.0-10.5 ft.

The 20 soil borings for the initial soil investigation were advanced between May 10 and May 14, 1993 using a truck-mounted drill rig operated by HEW Drilling of East Palo Alto, California under the observation of a WCC geologist. A total of 173 soil samples were collected from the twenty soil borings for possible chemical analysis. Soil samples were

collected using a 2-inch I.D. split-spoon sampler with clean stainless-steel or brass sample tubes for analytical testing and preparation of a detailed log of each boring. Logs of the borings are presented in Appendix A.

All drilling and sampling equipment was cleaned with a hot pressure washer between each boring. Sampling equipment was cleaned between sample drives with an alconox detergent wash, double rinsed in tap water, then double rinsed with deionized water to reduce the potential for cross-contamination. Soil samples collected for chemical analysis within the sample tubes were sealed with Teflon and plastic endcaps, labeled, placed on ice and transported under chain of custody procedures, via Federal Express, to CKY Laboratories in Torrance, California. CKY is a California certified analytical laboratory. Soil cuttings from each boring and decontamination wash water were placed in DOT approved 55-gallon drums, labeled and stored at the site for later disposal. At the completion of each boring advancement, the boring was backfilled with a cement bentonite grout mixture.

The samples from borings located in the former nursery area of the site (Borings WCB-1 through -12) that were obtained approximately 6 inches beneath the transition between the park fill and pre-park soil were analyzed for a wide range of pesticides and herbicides. This was to provide a screening-level assessment of potential contamination related to previous commercial nursery operations. One sample from each boring was analyzed by EPA Methods 8080, 8140, and 8150.

Possible metals contamination was the primary concern of this investigation. CAM 17 metals scans (also commonly called Title 22 or TTLC metals scans) by EPA Methods 6010/7000 series were performed during the initial soil investigation on samples collected approximately 6 inches below the transition between the park fill and underlying pre-park soil. One such sample from each boring was analyzed to provide a screening-level identification of specific metals for further investigation as contaminants of concern. The only metals that appeared to have significantly elevated concentrations in the screening-level assessment phase of the initial soil investigation were arsenic, lead, and zinc. On this basis lead and zinc, and to a somewhat lesser degree arsenic were the focus of subsequent analysis of the remaining soil samples obtained from each boring. Selected samples of soil were analyzed for pH by EPA Method 9045.

2.3 SUPPLEMENTAL SOIL INVESTIGATION

The supplemental investigation included installation and sampling of six additional borings in the vicinity of Borings WCB-13 and -14, the selective removal of asphalt at the play court area, sampling of the underlying aggregate base material, and sampling of the precipitate-like substance found in some of the pavement cracks.

The supplemental soil borings, WCB-21 through -26 were installed to better delineate the extent of soil contamination encountered in Borings WCB-13 and -14. The six supplemental borings were installed on July 24, 1993 using a truck-mounted auger drilling rig operated by Great Sierra Exploration of Novato, California, under the supervision of a WCC geologist. Samples of soil were obtained at depths of approximately 0.5, 2, 5, and 7 feet beneath the bottom of the imported topsoil layer, aggregate base material, or imported soil backfill used in the 1978 removal action, whichever was appropriate for the particular boring location. The design grading plans for the park construction and lithology encountered during the initial soil investigation program were consulted to guide the field sampling. The soil samples were forwarded to CKY Laboratory for analysis for lead and zinc by Method 6010, arsenic by GFAA, and pH by Method 9045.

The selective removal of pavement was performed by WCC personnel on June 28, 1993. The purpose was to expose more of the precipitate-like substance in some of the pavement cracks and the soil staining observed in the aggregate base material penetrated by soil borings in pavement areas. A grab sample (Court 1) of the aggregate base material was obtained that day and forwarded to ATI Laboratory in San Diego, a California certified laboratory for a wide range of analyses. On July 8, a composite sample of the aggregate base material (Court 2) and of the precipitate substance (Crack 1) from various locations at the play court area was obtained and forwarded to ATI for a variety of total and soluble metals analyses. The location of aggregate base samples Court 1 and 2 are shown on Figure 1. The location of precipitate sample Crack 1 is shown on Figure 2.

On July 30, nine discrete samples (8 primary and one duplicate) of the precipitate substance were collected from locations widely distributed over the play court area. The locations of these precipitate samples are shown on Figure 2. The samples were submitted to ATI for analysis of pH, sulfide, sulfate, arsenic, lead, and zinc.

3.1 PRESENT SITE DEVELOPMENT

The park covers approximately 3 acres. Low knolls, up to about 6 feet high, of grass-covered and tree-planted fill generally line the north, east, and southern perimeters of the park. The south side of the park is bordered by a gravel covered, undeveloped strip of land approximately 40 feet wide along the 98th Avenue frontage.

The park currently consists of a grassy field area on the southern side of the park, while the northern side of the park contains two basketball courts, a children's sandbox/playground area, and a community center/maintenance structure. The general layout of the park is presented on Figure 1.

3.2 SOILS

The general subsurface conditions encountered in the borings within the former battery factory area consists of 3-inch thick lawn, underlain by 6 to 12 inches of clayey silt topsoil fill, which is underlain by 2 to 4 feet of dark brown to black gravelly clay fill containing wood and red brick debris fragments. The gravelly clay fill is underlain by 3 to 15 feet of brown to grayish olive brown, stiff silty clay that is interlayered with sandy clays and sandy silty clays.

The general surface/subsurface conditions encountered in the borings within the former nursery area consisted of either 3-inch thick lawn and associated 0.5 to 3 feet of clayey silt topsoil, or 2-inch thick asphalt underlain by approximately 4 inches of silty, sandy gravel aggregate base rock fill within the basketball courts area. The clayey silt topsoil and the gravel aggregate base rock are underlain by up to 3 feet of dark brown to black gravelly clay fill containing wood and brick debris. The gravelly clay fill is underlain in mound areas by 2 to 7 feet of very dark brown to black stiff silty clay fill containing broken glass and wood debris. The gravelly clay fill in the basketball and asphalt walkway areas is underlain by 1 to 2 feet of very dark gray to dark brown silty clay fill containing brick and concrete debris.

The two fill units in the former nursery area are underlain by 4 to 10 feet of brown to olive brown, stiff silty clay that is interlayered with sandy clays and sandy silty clays. This interlayered silty clay is underlain by 1 to 2 feet of yellowish brown to light yellowish brown stiff gravelly clay, which is underlain by up to 3 feet of light brown, moist gravelly clayey sand. The gravelly clayey sand is underlain at depth by a light yellow brown, stiff silty clay.

The aggregate base material underneath the play courts and path pavements consists of rhyolite rock fragments and residual silt. This material is a distinctive yellow color, but the internal color of the larger rock fragments is an even gray. Rhyolite is a volcanic rock common in the East Bay hills.

No visible contamination was observed in any of the borings in the former battery factory area and any of the borings in the former nursery area except borings except the distinctive yellow color of the aggregate base material.

3.3 GROUNDWATER

Groundwater was not a subject of this investigation. Groundwater was not encountered in any of the borings installed for this investigation. Reportedly, groundwater in the area is encountered at a depth of approximately 30 feet.

This section presents the results of contaminant characterization activities. It includes a discussion of the analytical data by contaminant or parameter type, the degree of contamination and its distribution across the site. This section also contains a summary of the analytical data quality assurance/quality control (QA/QC) review, estimated background levels, and discusses correlations between the data.

4.1 BACKGROUND LEVELS ESTIMATION

"Background" soil parameters or concentration levels can be defined two ways: levels due to the natural geologic composition of the soil, and levels including those due to human-related activity but not related to operations or activities specific to the site being studied. The first definition is often referred to a "natural" background and the second as "anthropogenic" background. As an example of natural background, soil naturally contains various metals such as arsenic, lead, and zinc. The concentrations of each individual metal will depend on the particular soil type. As an example of anthropogenic background, surficial and shallow soils in urban areas and near roads often contain relatively high concentrations of lead due in part to past air pollution from leaded gasoline.

Assessment of background concentrations for this investigation did not include collection of samples from off site. In part, this was due to the knowledge that a previous investigation by DHS in 1978 (see Plate 1) found high levels of lead in shallow soils at locations across the street from the park. These elevated concentrations of level could have been due to a variety of causes not necessarily related to the site and would be an unacceptable source of uncertainty if included in an anthropogenic background evaluation. Instead, the assessment of background levels relied on samples obtained from the site but at apparently uncontaminated locations.

The range of natural background levels was estimated by a semi-qualitative review of the distribution of the analytical results, review of literature regarding soil metals concentrations in the general region of the Bay Area and northern California, and by previous WCC

experience at other similar sites. The background level estimation did not employ geostatistical methods. This will be done in the near future and may require the analysis of additional samples. The natural background levels estimated are described below for arsenic, lead, zinc, and pH.

4.2 QA/QC REVIEW SUMMARY

An extensive Quality Assurance/Quality Control (QA/QC) review was performed of the analytical data. The results of the review are presented in Appendix B. The review concluded that the data is of acceptable analytical accuracy and precision, with some limitations of the utility of the metals data due to inherent contaminant stratification and soil matrix heterogeneity.

4.3 PESTICIDES AND HERBICIDES

Samples from borings located in the former nursery area of the site (Borings WCB-1 through -12) were obtained approximately 6 inches beneath the transition between fill soil that was placed to develop the park and the underlying pre-park soil. These samples were analyzed for a wide range of pesticides and herbicides. This was to provide a screening-level assessment of potential contamination related to previous commercial nursery operations. One sample from each boring was analyzed by EPA Methods 8080, 8140, and 8150.

No pesticides or herbicides were detected.

4.4 METALS

Possible metals contamination was the primary concern of this investigation. CAM 17 metals scans (also commonly called Title 22 or TTLC metals scans) by EPA Methods 6010/7000 series were performed during the initial soil investigation on samples collected approximately 6 inches below the transition between the park fill and underlying pre-park soil. One sample from each boring was analyzed to provide a screening-level identification of specific metals for further investigation as contaminants of concern. Also, two grab samples of the aggregate base material beneath the play courts collected during the supplemental soil investigation (samples Court-1 and -2) were analyzed for CAM 17 metals.

The results of the metals scans are presented in Table 1. The only metals that appeared to have significantly elevated concentrations, i.e., significantly above background, in the screening-level assessment phase of the initial soil investigation were arsenic, lead, and zinc. On this basis lead and zinc, and to a somewhat lesser degree arsenic, were the focus of subsequent analysis of the remaining soil samples obtained from each boring. Arsenic, lead, and zinc were the only metals analyzed from the "hot spot delineation" borings (WCB-21 through -26) of the supplemental soil investigation. The results of the arsenic, lead, and zinc analyses are presented in Table 2, and are discussed below. Some key concepts regarding the nature and extent of contamination are illustrated in the figures and are also discussed below.

4.4.1 Arsenic

Soil samples were analyzed for arsenic by the GFAA method. The results of the arsenic analyses are summarized on Table 2. Natural background for arsenic was estimated to range up to approximately 10 mg/kg. Arsenic concentrations in soil samples above this estimated background level are graphically presented on Figure 2.

Highly elevated arsenic concentrations, typically on the order of 400 to 500 mg/kg were found in the imported aggregate base material beneath the asphalt pavement of play courts and pathways. The arsenic levels in the underlying soil generally decrease to near background levels within 6 to 12 inches beneath the bottom of the aggregate base layer. The slightly elevated arsenic concentration in the pre-park soil beneath the sandbox at WCB-7 (12 mg/kg at a depth of 18 inches) may be due to leachable arsenic in water runoff from the aggregate base material into the sandbox, the possible presence of this aggregate base material in subdrains beneath the sandbox, or may be an isolated occurrence. Arsenic concentrations in this boring returned to background levels within a depth of 3 feet. Elevated arsenic levels are a secondary contaminant at the lead "hot spot" around WCB-13, which appears to be associated with the former battery factory. Elevated arsenic concentrations in this area appear to be limited to a depth of 3 feet or less. The elevated arsenic concentration of 27 mg/kg at a depth of 18 inches WCB-11 appears to be an isolated occurrence.

The precipitate-like substance found in pavement cracks contains elevated concentrations of arsenic (sample concentrations of 7 mg/kg to 33 mg/kg) but at concentrations significantly below those found in the underlying aggregate base.

The California non-RCRA criteria for definition of hazardous waste for disposal purposes based on total metal concentration is the Total Threshold Limit Concentration (TTLC) contained in CCR Title 22. The TTLC criteria for arsenic is 500 mg/kg. Of all the samples obtained during this investigation, only the aggregate base material contained arsenic concentrations close to or exceeding the TTLC. Samples of the aggregate base material were generally in the range of 400 to 500 mg/kg with a highest sample concentration of 734 mg/kg. On this basis, it appears that the aggregate base material likely exceeds TTLC criteria overall.

Soluble Arsenic

A sample of the aggregate base material (sample Court-2) was analyzed for soluble arsenic using the WET test for comparison to California CCR Title 22 Soluble Threshold Limit Concentration (STLC) criteria for identification of hazardous waste for disposal purposes. The soluble arsenic concentration in the aggregate base material by this test was 8.8 mg/L, above the STLC soluble arsenic criteria of 5 mg/L.

A Toxicity Characteristic Leaching Procedure (TCLP) test for soluble arsenic for comparison to federal RCRA classification of hazardous waste for disposal was not performed during this phase of the investigation.

A modified WET test of sample Court-2 using deionized water was also performed to more realistically assess the in-place or in situ leachability of arsenic due to rainfall and watering of the adjacent lawn areas of the park. The soluble arsenic concentration was significantly less (less than 0.05 mg/L).

4.4.2 Lead

Soil samples were analyzed for lead by EPA Method 6010. The results of the lead analyses are summarized on Table 2. Natural background for lead was estimated to range up to

40 mg/kg. Based on the site's location in a highly urban area and next to major thoroughfares, i.e., Bancroft and 98th Avenues it was anticipated that anthropogenic background lead levels in surface soil could be significantly higher. For this reason, "elevated" concentrations of lead for this investigation were defined as 100 mg/kg or higher.

Highly elevated lead concentrations were encountered beneath some of the landscape knolls. e.g., in the vicinity of Boring WCB-13. At other knolls no elevated lead concentrations were encountered, e.g., at WCB-10.

At the knoll in the vicinity of WCB-13 and WCB-23, along Bancroft Avenue in the general area of the former battery factory, the extent of contamination appears to include the entire knoll. Lead concentrations as high as 6,700 mg/kg were encountered, and were generally higher than the TTLC for lead of 1,000 mg/kg. The depth of contamination in this area ranges from 1 foot to approximately 6 feet beneath the ground surface, and includes the park fill material used to build up the knoll and also extends into the pre-park soil zone underneath.

Boring WCB-15 at another knoll in the former battery factory area also encountered elevated lead, 1,520 mg/kg at a depth of 2 feet but not deeper than 3 feet. This high lead concentration was in the park fill material. Lead concentrations at this location were not elevated in the pre-park soil underneath. It is not possible on the basis of a single boring to assess whether the contamination encountered at this location encompasses the entire knoll.

Significantly elevated lead concentrations were also encountered in one knoll in the former nursery area, i.e., not within the battery factory area. Here, WCB-12 encountered elevated lead concentrations as high as 502 mg/kg at a depth of 4.5 feet in the park fill. WCB-11, also located on this knoll, but behind the building, did not encounter elevated lead concentrations.

Elevated lead concentrations were also encountered in the aggregate base material beneath the play courts and asphalt pathways. Lead concentrations in this material were generally in the range of 400 to 600 mg/kg, with a highest measured concentration of 734 mg/kg in sample Court-2. Overall, the lead levels in the aggregate base material approach but do not

exceed the TTLC. The depth of significant contamination in the underlying soil appears to be limited to a depth of less 6 to 12 inches beneath the bottom of the base material.

The precipitate-like substance found in the pavement cracks does not contain significant concentrations of lead (sample concentrations of 6 mg/kg to 35 mg/kg).

Soluble Lead

A sample of the aggregate base material (sample Court-2) was analyzed for soluble lead using the WET test for comparison to the STLC criteria for soluble lead for classification of hazardous waste for disposal purposes. The soluble lead concentration in the aggregate base material by this test was 0.4 mg/L, well below the STLC criteria of 5 mg/L.

A TCLP test for soluble lead for comparison to federal RCRA criteria for classification of hazardous waste for disposal was not performed during this phase of the investigation, but given the results of the WET test, would probably not exceed the RCRA criteria for lead of 5 mg/l.

A modified WET test of sample Court-2 using deionized water was also performed to more realistically assess the in-place or insitu leachability of lead due to rainfall and watering of the adjacent lawn areas of the park. The soluble lead concentration was much less; less than 0.03 mg/L.

4.4.3 Zinc

Soil samples were analyzed for zinc by EPA Method 6010. The results of the zinc analyses are summarized on Table 2. Natural background for zinc was estimated to range up to 80 mg/kg.

Slightly elevated zinc concentrations up to approximately 150 mg/kg were encountered in some of the park fill soil in the knolls and in the pre-park soil in the former battery factory area. A markedly higher zinc concentration of 515 mg/kg was detected at a depth of one foot in the pre-park soil at WCB-13.

Higher zinc concentrations were encountered in the aggregate base material beneath the play courts and asphalt pathways and in the underlying soil up to a depth of 18 inches to 3 feet. Zinc concentrations in the aggregate base and underlying soil were generally in the range of 300 to 600 mg/kg. The depth of significant contamination appears to be limited to a depth of 18 inches to 3 feet beneath the bottom of the base material.

The precipitate-like substance found in some of the pavement cracks contains high levels of zinc generally in the range of 6,000 to 8,000 mg/kg.

With the exception of the precipitate, none of the samples contained zinc concentrations exceeding the TTLC for zinc of 5,000 mg/kg.

Soluble Zinc

Since none of the soil and aggregate base material samples contained total zinc concentrations close to or exceeding a level 10 times the nominal STLC for zinc of 250 mg/l, it is unlikely that these materials contain WET soluble zinc exceeding the STLC criteria.

A sample of the aggregate base material (sample Court-2) was analyzed for soluble zinc using the WET test and a modified WET test using deionized water to assess the insitu leachability of zinc due to rainfall and watering of the adjacent lawn areas of the park. The soluble zinc concentration by the WET test was 4.1 mg/L. The soluble zinc concentration using deionized water, supposedly a much less aggressive leaching procedure, was not significantly less (3.3 mg/L).

4.5 pH

Selected samples of soil were analyzed for pH by EPA Method 9045. A summary of the pH results are presented on Table 2. Background or natural soil pH was estimated to range approximately between about 6 and 8.5. pH was included as an analytical parameter for several reasons:

• to identify possible acids contaminated soil that might pose a health or environmental threat;

- to distinguish between different sources of soil metals contamination on the basis of their characteristic correlation with pH; and
- as a relatively inexpensive screening-level parameter indicating possible metals contamination associated with acid, e.g., battery acid.

The pH of the precipitate material in the pavement cracks was very low i.e., acidic, with measured pHs as low as 1.4 and generally below 2. The regulatory hazardous criteria for corrosivity for transport and disposal is pH 2 or below.

The pH of the aggregate base material and immediately underlying soil was generally 3 to 3.5, i.e., acidic, with pHs ranging from 2.8 in sample Court-2 to 4.1 in sample B24-1.

The pH of the other fill and native soil units at the park was generally within the apparent background range, with a few sample measurements well into the basic range (sample B14-3 with a pH of 11 and sample B16-1 with a pH of 9.5) and acidic range (B19-2 at pH 3.7, B19-4 at pH 4.1, and B22-4 at pH 3.6). The cause of the basic or high pH is suspected to be due to the presence of concrete debris in the fill material.

4.6 DATA CORRELATIONS

The aggregate base material is typified by the joint presence of significantly elevated concentrations of arsenic, lead, and zinc, and low pH in the 3 to 4 range. Soil beneath this material that appears to be impacted by leaching is generally typified by significantly elevated zinc and low pH in the 3.5 to 5 range, although not by significantly elevated arsenic and lead concentrations except in very close proximity to the base material.

Contamination in the pre-park soil in the former battery factory area is typified by elevated lead concentrations with zinc and sometimes arsenic as distant secondary contaminants. The same is true of contaminated park fill material in the knolls across the park. This fill material in the knolls is also geotechnically similar to the identified pre-park soil consisting of an older fill unit pre-dating the battery factory or nursery.

With the exception of the aggregate base material and impacted underlying soil, pH does not correlate well with arsenic, lead, or zinc concentrations.

4.7 GENERAL CONTAMINATION DISTRIBUTION

There appear to be three distinct types or general patterns of contamination at the site. The first pattern is attributable to the aggregate base material beneath the play courts and pathways in the north half of the park. This material, which has tentatively been identified as a mixture of rhyolite rock fragments and residual silt, is distinctively yellow in color, is highly acidic, and contains significantly elevated concentrations of arsenic and lead, and to a lesser extent, zinc. This material preferentially leaches zinc and acid relative to arsenic and lead. The depth of lead and arsenic contamination in the underlying soil is generally limited to a depth of 6 to 12 inches, while the depth of zinc contamination is between 18 inches and 3 feet. The precipitate substance in found in some of the pavement cracks is derived from this material, and is itself distinctively yellow, very acidic, and contains very high concentrations of zinc but low concentrations of arsenic and lead.

The second pattern is lead contaminated soil in the fill material used to construct some of the landscaped knolls. Its contaminant profile and geotechnical characteristics are the same as the pre-park soil zone (the intact older fill unit) encountered beneath the former battery factory area. This suggests that the knolls were developed at least in part by "cut and fill" earthwork from the former battery factory area during grading construction of the park. The contaminated soil within the knolls is covered by at least the 6 inches of clean topsoil placed to support lawn growth.

The third pattern is lead contamination in the pre-park soil zone along a portion of Bancroft Avenue under the former battery factory area. This area corresponds to the former location of aboveground acid tanks and railroad spur noted in historic Sanborn maps and aerial photos. This area is now occupied by the knoll in the vicinity of Borings WCB-13, -14, -22, and -23, and apparently was not included in the 1978 soil removal activities. The contamination here is typified by elevated lead, slightly elevated arsenic and zinc, and normal soil pH. The extent of contamination below the park fill and pre-park soil interface is apparently only a few feet.

Migration routes for the contamination in the soil beneath the eastern portion of the former battery factory area, in some of the knolls across the site, and within and underneath the aggregate base material include downward leaching of contamination dissolved in surface water through the soil column and potential resultant groundwater contamination and migration. Windborne migration and casual, direct human ingestion of contamination in the factory area and knolls is eased by the presence of 6 inches or more of clean, imported topsoil material. Although eased by the presence of the overlying asphalt pavement, windborne migration and direct human ingestion of the contaminated aggregate base material are potential migration routes through the crystalline material in some of the pavement cracks. This crystalline material is derived from the aggregate base material.

Metals contamination is not significantly degraded by sunlight or microorganism biodegradation.

In a typical soil environment, most metals generally are not mobile (they do not significantly dissolve or evaporate). Lead is a particularly immobile metal, however, the mobility of most metals is increased in an acidic environment, such as that found in the aggregate base material. The soil contamination information from this site suggest that metals contamination associated with the aggregate base material has not moved deeper than one to three feet for zinc, and less than two feet for arsenic and lead. This movement appears to be similar for the lead contamination associated with the knolls and the former battery factory area

6.1 SUMMARY OF FINDINGS

The first is attributable to the aggregate base material beneath the play courts and pathways in the north half of the park. This material, which has tentatively been identified as a mixture of rhyolite rock fragments and residual silt, is distinctively yellow in color, is highly acidic, and contains significantly elevated concentrations of arsenic and lead, and to a lesser extent, zinc. This material preferentially leaches zinc and acid relative to arsenic and lead. The depth of lead and arsenic contamination in the underlying soil is generally limited to a depth of 6 to 12 inches, while the depth of zinc contamination is between 18 inches and 3 feet. The precipitate substance found in some of the pavement cracks is derived from this material, and is itself distinctively white to yellow, very acidic, and contains relatively much high concentrations of zinc but low concentrations of arsenic and lead.

The second is lead contaminated soil in the fill material used to construct some of the landscaped knolls in the park. Its contaminant profile and geotechnical characteristics are the same as the pre-park soil zone encountered beneath the former battery factory area. Based on the similar geotechnical and contaminant characteristics, and the park construction plans detailing planned earthwork, we conclude that at least some of the fill material in the knolls was derived from excavation of the soils from beneath the former battery factory. Since the lead levels measured do not correlate with soil staining or notably low pH, possible soil classification and segregation activities during park construction based on soil staining or pH monitoring would have been ineffective in detecting lead contamination of the levels encountered during this investigation.

Finally, the third is lead contaminated soil beneath (rather than within) the existing knolls in the former battery factory area. This contamination appears to be concentrated in a portion of the former battery factory area along Bancroft Avenue that was occupied by aboveground acid storage tanks and a railroad loading spur. These area was apparently not included in the 1978 soil removal activities. The contamination here is typified by elevated lead, generally

slightly elevated arsenic and zinc, and normal soil pH. The extent of contamination below the parkfill and pre-park soil interface is usually only a few feet. The contaminated soil within the knolls is covered by at least the 6 inches of clean topsoil placed to support lawn growth.

6.2 RECOMMENDATIONS FOR ADDITIONAL INVESTIGATION ACTIVITIES

Recommendations for additional investigations include:

- A geostatistical evaluation of background levels of arsenic, lead, and zinc at the site. This may require additional soil sample analyses.
- investigation of past and current quarry and mining operations in rhyolite formations in the area to identify likely sources of the aggregate base material.
- TCLP and/or WET solubility testing of the "hot spot" soil contamination to identify state and federal hazardous waste classification for disposal and pretreatment, if required.
- Solubility testing of "moderate" contamination levels not presenting a human health
 threat and associated in situ leachability evaluations to estimate contaminant
 concentration thresholds below which contaminated soil may be left in place and
 be protective of environmental concerns i.e., groundwater quality.
- Additional delineation of the lateral and vertical extent of lead contamination encountered in the knoll at WCB-15. This may most efficiently be done immediately prior to or concurrent with the planned excavation and offsite disposal activities (see below).

6.3 PLANNED REMEDIAL ACTIVITIES

The planned remedial activities are the excavation and offsite disposal of the aggregate base material under pathways and play courts, the overlaying asphalt pavement, and underlying soil containing arsenic or lead concentrations exceeding the cleanup criteria. Lead

contaminated soil exceeding the cleanup criteria will also be removed from the landscaped knolls at the park. The soil removal from the knoll along Bancroft Avenue in the vicinity of Borings WCB-13 and -22 will extend beneath the knoll to reach the contamination under the aboveground storage tank and loading spur area of the former battery factory. At this time, the assumed cleanup criteria for shallow soils will be 200 mg/kg for lead and 20 mg/kg for arsenic. The project cleanup criteria will be finalized before the remedial activities are completed.

The remedial excavation will employ dust suppression measures, e.g., water sprays, and the City will set up air monitoring stations around the park to measure any potential dust emissions from the excavation and earthworking.

Sufficient removal of contaminated soil will be confirmed by soil sampling of the bottom of the excavations.

The findings, recommendations, specifications, or professional opinions are presented, within the limits prescribed by the client, after being prepared in accordance with generally accepted engineering practice in Northern California at the time this investigation was performed. No other warranty is either expressed or implied.

CERTIFICATION

This report was prepared under the supervision of:

Signature:

Name:

Michael P. McGuire, P.E.

Title:

Project Engineer

Professional License Number: Registered Civil Engineer No. 42565

Table 1. Summary of Soil Results for pH and CAM 17 Metals (mg/kg).

				Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Sample	pH	Antimony	Amenic	1000	75	100	2500	8000	2500	1000	20	3500	2000	100	500	700	2400	5000
TTLC		500	500		<0.75	<1	44.6	8.31	25.4	88.7	0.1	<25	34	<15	<l< td=""><td><20</td><td>56.8</td><td>72.3</td></l<>	<20	56.8	72.3
B-01-3	7.29	<15	5.09	194	<0.75		62.6	10.3	27	11.9	0.11	<2.5	51.7	<15	<l< td=""><td><20</td><td>68.3</td><td>621</td></l<>	<20	68.3	621
B-02-1	6.26	<15	5.3	279		<1	59.1	4.78	78.3	13.2	<0.05	<25	30.6	<15	<1	<20	67.2	299
B-03-1	3.87	<15	18.8	224	<0.75	<1	60.5	9.2	38.5	10.9	0.06	<2.5	44.5	<15	<1	<20	66.7	326
B-03-2	5.58_	<15	8.1	244	<0.75	<1	53.6	7.05	84.6	10.9	<0.05	<2.5	37.4	<15	<1	<20	59.9	404
B-04-2	3.41	<15	7.07	187	<0.75	1.51		12.6	29.9	12	<0.05	<2.5	52.5	<15	<1	<20	64	497
B-05-2	3.80	<15	5.02	106	<0.75	<1	57.8	6.77	49	12.4	<0.05	<2.5	49.2	<15	<1	<20	75.1	62.7
B-06-1	6.95	<15	ى	206	<0.75	<1	. 63.7	10.6	70.1	9.87	<0.05	<2.5	61.2	<15	<l< td=""><td><20</td><td>72.1</td><td>76.5</td></l<>	<20	72.1	76.5
B-07-1	6.85	<15	11.6	100	<0.75	<l< td=""><td>77.3</td><td>- · · · · · · · · · · · · · · · · · · ·</td><td>30.9</td><td>13.7</td><td><0.05</td><td><2.5</td><td>50.2</td><td><15</td><td><1</td><td><20</td><td>77.3</td><td>464</td></l<>	77.3	- · · · · · · · · · · · · · · · · · · ·	30.9	13.7	<0.05	<2.5	50.2	<15	<1	<20	77.3	464
B-08-2	4.79	<15	13.9	249	<0.75	1.09	56.2	13.4	24.9	8.14	<0.05	<2.5	48	<15	<1	<20	57.9	538
B-09-1	4.73	<15	7.24	150	<0.75	<1<1	56.8	9.42		13.8	<0.05	<2.5	36.5	<15	<1	<20	58.1	53.7
B-10-4	7.01	<15	6.64	176	<0.75	<1	55.6	6.98	30.7	41.6	0.17	<2.5	37.9	<15	<1	<20	64.1	67.1
B-11-4	7.00	<15	9.38	222	<0.75	<1	51.8	10.3	30.8		0.17	<2.5	47.8	<15	<1	<20	67.2	103
B-12-3	7.44	<15	ک	260	<0.75	<1	53.8	19.9	33.5	95.1		<2.5	35.7	<15	<1	<20	67.9	515
B-13-1	7.66	<15	96.6	514	<0.75	1.13	49.6	7.86	49.4	1100	0.25	<2.5	33.1	<15	<1	<20	49.6	65.6
B-14-2	7.90	<15	5.89	239	<0.75	<1	50.9	4.79	34.5	484	0.07	<2.5	57	<15	<1	<20	52.8	75
B-15-4	7.43	<15	ತ	156	<0.75	<1	64.3	12.4	81.4	9.61	<0.05	<2.5	44.4	<15	<1	<20	62.5	52.4
B-16-2	7.14	<15	ব	240	<0.75	<1	63	10.2	40.7	8.87	<0.05	<2.5	39.2	<15	<1	<20	43.9	49.7
B-16-3	6.99	<15	_ که _	148	<0.75	<1	52.4	8.91	38.7	6.97	<0.05	<2.5	73.3	<15	<1	<20	73.8	67
B-17-2	6.73	<15	త	250	<0.75	<1	73.9	13.2	46.4	10.4	0.21	<2.5	54.7	<15	۹	<20	74.7	68.4
B-18-2	6.39	<15	ડ	184	<0.75	<1	90.5	9.2	54	7.47	0.15	<2.5	34.5	<15	<1	<20	64	72.4
B-19-2	3.65	<15	<5	114	<0.75	1.8	72.5	8.12	58.7	20.2	0.11		49.1	<15	<1	<20	51.7	73.2
B-20-2	7.37	<15	5.14	137	<0.75	<1	59.7	6.22	66.1	13.6	<0.05	<2.5 11.9	1.1	2.9	5.9	47.7	0.9	291
COURT-1	3.0	10.7	397	612	<0.5	<0.5	3.2	<1.0	4K.3	594	4.72		3.1	3.4	9.8	62.1	2.9	443
COURT-2	2.80	16.2	734	332	<0.5	<1.0	43.3	1.2	8.4	692	6.28	16.6	1-2:1-	+	 _	 	1	7540
CRACK-1			14.4		İ	1		<u> </u>	<u> </u>	5.5	<0.25	_ 			J	۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		<u> </u>

Table 2. Summary of Soil Results for pH and Arsenic, Lead, and Zinc (mg/kg).

B-01-2 B-01-3 B-01-4 B-01-5 B-01-6 1 B-01-7 B-01-8 1 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	0.5 3 4.5 6 7.5 10.5 11 13.5 16 19 1 3 5.5 6	7.25 7.29 7.25 8.23 8.25 8.30 6.26 7.25 7.32	500 11.1 10.4 5.09	1000 116 39.9 88.7 8.21 <5 7.57	5000 94.7 140 72.3 41.8 41.1 54.2	PF PF OF OF OF
B-01-1 B-01-2 B-01-3 B-01-4 B-01-5 B-01-6 B-01-7 B-01-8 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	3 4.5 6 7.5 10.5 11 13.5 16 19 1 3 5.5	7.29 7.25 8.23 8.25 8.30 6.26 7.25	11.1 10.4 5.09	116 39.9 88.7 8.21 <5 7.57	94.7 140 72.3 41.8 41.1	PF OF OF OF
B-01-2 B-01-3 B-01-4 B-01-5 B-01-6 1 B-01-7 B-01-8 1 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	3 4.5 6 7.5 10.5 11 13.5 16 19 1 3 5.5	7.29 7.25 8.23 8.25 8.30 6.26 7.25	10.4 5.09	39.9 88.7 8.21 <5 7.57	140 72.3 41.8 41.1 54.2	PF OF OF OF
B-01-3 B-01-4 B-01-5 B-01-6 B-01-7 B-01-8 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	4.5 6 7.5 10.5 11 13.5 16 19 1 3 5.5	7.25 8.23 8.25 8.30 6.26 7.25	5.09	88.7 8.21 <5 7.57	72.3 41.8 41.1 54.2	OF OF OF
B-01-4 B-01-5 B-01-6 B-01-7 B-01-8 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	6 7.5 10.5 11 13.5 16 19 1 3 5.5	7.25 8.23 8.25 8.30 6.26 7.25		8.21 <5 7.57	41.8 41.1 54.2	OF OF
B-01-5 B-01-6 B-01-7 B-01-8 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	7.5 10.5 11 13.5 16 19 1 3 5.5	8.23 8.25 8.30 6.26 7.25	5.3	7.57	54.2	OF
B-01-6 B-01-7 B-01-8 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	10.5 11 13.5 16 19 1 3 5.5	8.25 8.30 6.26 7.25	5.3	7.57	54.2	
B-01-7 B-01-8 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	11 13.5 16 19 1 3 5.5	8.25 8.30 6.26 7.25	5.3			OF
B-01-8 B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	13.5 16 19 1 3 5.5	6.26 7.25	5.3			OF
B-01-9 B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	16 19 1 3 5.5	6.26 7.25	5.3	11.9	621	OF
B-01-10 B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	19 1 3 5.5	7.25	5.3	11.9	621	OF
B-02-1 B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	1 3 5.5	7.25	5.3	11.9	621	OF
B-02-2 B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	3 5.5	7.25	5.3	11.9	621	
B-02-3 B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	5.5					Ur
B-02-4 B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5		7.32	ļ	5.78	44.1	
B-02-5 B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	6	· ·		8.8	44.4	
B-02-6 B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5		7.30	·	8.94	48.3	/
B-02-7 B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	9	7.54		8.43	52.6	
B-03-1 B-03-2 B-03-3 B-03-4 B-03-5	11	7.94				
B-03-2 B-03-3 B-03-4 B-03-5	14					
B-03-3 B-03-4 B-03-5	0.5	3.87	18.8	13.2	299	AB
B-03-4 B-03-5	1	5.58	8.1	10.9	326	OF
B-03-5	3	7.08	<5	6.97	52.3	OF
B-03-5	4	7.59	<5	9.49	51.2	
	4.5	7.66	<5	6.86	54.5	
B-03-6	8.5	7.72	<5	9.73	59.9	
	10.5	7.78				
	13.5					
	0.5		458	144	432	AB?
B-04-2	1	3.41	7.07	10.9	404	OF
B-04-3	3	6.63		7.42	57.1	OF
B-04-4	4.5	7.05		9.85	44.6	OF
B-04-5	7.5	7.50		6.09	53	
B-04-6	. 8	7.36		6.37	62.9	
B-04-7	11	7.66		1		
B-04-8	13	7.00	 			
B-04-9	16		 	-		1
	0.5	3.31	388	496	328	AB?
B-05-1 B-05-2		3.80	5.02	12	497	OF

AB= Aggregate Base Material PF= Park Fill OF= Intact Old Fill 1978= 1978 Fill No note for native soil.

Table 2. Summary of Soil Results for pH and Arsenic, Lead, and Zinc (mg/kg).

Sample	Depth (feet)	pН	Arsenic	Lead	Zinc	Comments
		-			5000	·
TTLC			500	1000	5000	
B-05-3	2.5	7.11		7.45	36	OF
B-05-4	4.5					
B-05-5	6.5	8.14		10.1	49.7	
B-05-6	7	8.14		8.4	51.2	
B-05-7	10			9.02	63.3	
B-05-8	12	8.10			<u> </u>	
B-05-9	15					0.1375
B-06GRB	0.5	6.44	<5	<5	26.7	SAND
B-06-1	1	6.95	<5	12.4	62.7	OF
B-06-2	3	7.59				
B-06-3	5.5	7.90				
B-06-4	6	7.87				
B-06-5	9	7.54				
B-06-6	11	7.80				
B-06-7	14					
B-07GRB	0.5	6.34	<5_	5.52	27.6	SAND
B-07-1	1.5	6.85	11.6	9.87	76.5	OF
B-07-2	3	7.00	<5	5.39	62	OF
B-07-3	6	7.69	<5	<5	72.9	
B-07-4	6.5	7.71	<5	7.92	63.6	
B-07-5	9.5	7.51	<5	6.67	50.4	
B-07-6	11	7.50			<u> </u>	
B-07-7	14					
B-08-1	0.5	3.25	450	481	309	AB?
B-08-2	1	4.79	13.9	13.7	464	OF
B-08-3	3	6.80	<5	6.49	38.4	OF
B-08-4	4.5	7.68	6.24	7.1	33	OF
B-08-5	7	8.01	5.45	6.16	40.7	
B-08-6	7.5					
B-08-7	10.5	7.78				
B-08-8	12.5					
B-08-9	15.5		 			
B-09-1	1	4.73	7.24	8.14	538	OF
B-09-2	3	6.94		5.71	36.8	OF
B-09-2	4.5	7.23		6.32	55.6	
B-09-3	7	7.37	†	7.14	43.3	

AB= Aggregate Base Material PF= Park Fill OF= Intact Old Fill 1978= 1978 Fill No note for native soil.

Table 2. Summary of Soil Results for pH and Arsenic, Lead, and Zinc (mg/kg).

Depth (feet)	pН	Arsenic	Lead	Zinc	Comments
·				•	
		500	1000	5000	
9.5	7.66				
10					
12					
15					
0.5	7.21	10.2	52.7	164	PF
2.5					PF
4	7.23	7.43	37.6	75.7	PF
6	7.01	6.64	13.8	53.7	OF
7.5	7.07				OF
9					
10.5	7.84				
11					
14.5	7.70				
17	7.96				
20					
1					PF
1.5	6.71	27.4	46.3	108	PF
3					OF
3.5	7.00	9.38	41.6	67.1	OF
4					OF
6.5	7.16				OF
9	7.22				
11	7.77			*	
14	7.56				
0.5	6.87		29.1	61.7	PF
1.5	7.19	6.65	105	108	PF
3		<5			PF
4			185	127	PF
	7.55				PF
					OF
	8.01		8.8	78 7	OF
		96.6	1160	515	OF
		 			OF
	7.50	 			OF
	9.5 10 12 15 0.5 2.5 4 6 7.5 9 10.5 11 14.5 17 20 1 1.5 3 3.5 4 6.5 9 11 14 0.5 15 3	9.5 7.66 10 12 15 0.5 7.21 2.5 4 7.23 6 7.01 7.5 7.07 9 10.5 7.84 11 14.5 7.70 17 7.96 20 1 1.5 6.71 3 3.5 7.00 4 6.5 7.16 9 7.22 11 7.77 14 7.56 0.5 6.87 1.5 7.19 3 7.44 4 4.5 7.55 6 9 8.01 11 7.94 14 7.93 1 7.66 3 7.56	9.5 7.66 10 12 15 0.5 7.21 10.2 2.5 4 7.23 7.43 6 7.01 6.64 7.5 7.07 9 10.5 7.84 11 1.5 7.70 17 7.96 20 1.5 6.71 27.4 3 3.5 7.00 9.38 4 9 7.22 11 7.77 14 7.56 0.5 6.87 1.5 1.5 7.19 6.65 3 7.44 <5	9.5 7.66 10 12 15 0.5 7.21 10.2 52.7 2.5 37.6 4 7.23 7.43 37.6 6 7.01 6.64 13.8 7.5 7.07 9 10.5 7.84 11 14.5 7.70 17 7.96 20 1 1.5 6.71 27.4 46.3 3 3.5 7.00 9.38 41.6 4 6.5 7.16 9 7.22 11 7.77 14 7.56 0.5 6.87 1.5 7.19 6.65 105 3 7.44 <	9.5 7.66 10 12 15 0.5 7.21 10.2 52.7 164 2.5 4 7.23 7.43 37.6 75.7 6 7.01 6.64 13.8 53.7 7.5 7.07 9 10.5 7.84 11 14.5 7.70 17 7.96 20 1 1.5 6.71 27.4 46.3 108 3 3.5 7.00 9.38 41.6 67.1 4 6.5 7.16 9 7.22 11 7.77 14 7.56 0.5 6.87 29.1 61.7 1.5 7.19 6.65 105 108 3 7.44 <5

AB= Aggregate Base Material PF= Park Fill

OF= Intact Old Fill

1978= 1978 Fill

No note for native soil.

Table 2. Summary of Soil Results for pH and Arsenic, Lead, and Zinc (mg/kg).

Sample	Depth (feet)	pН	Arsenic	Lead	Zinc	Comments
TTLC			500	1000	5000	
B-13-4	7	7.93	<5	6.22	55.9	
B-13-5	8.5	8.05				
B-13-6	9	8.04				
B-13-7	12					
B-13-8	14					
B-13-9	17					
B-14-1	1	7.22		13.3	60.3	PF
B-14-2	3	7.90	5.89	484	65.6	OF
B-14-3	4.5	11.03		6700	132	OF
B-14-4	6.5	7.39		6.26	49.6	
B-14-5	8.5	7.57		7.6	51.7	
B-14-6	9	7.67				
B-14-7	12	7.74				
B-14-8	14					
B-14-9	16.5					
B-15-1	1					PF
B-15-2	1.5	7.10	8.4	1520	91.9	PF
B-15-3	3.5	6.35	<5	8.1	44	PF
B-15-4	4.5	7.43	<5	9.61	75	
B-15-5	5	7.58				
B-15-6	7	7.75				<u> </u>
B-15-7	10.5	7.49				
B-15-8	12	7.37				
B-15-9	15.5	7.26				
B-16-1	1	9.49		138	65.4	1978/OF
B-16-2	2.5	7.14	<5	8.87	52.4	OF
B-16-3	3	6.99	<5	6.97	49.7	OF
B-16-4	4	6.81	,			
B-16-5	4.5					
B-16-6	6.5	8.08				
B-16-7	10	7.59				
B-16-8	11.5	7.47				,
B-16-9	15					
B-17-1	1	7.87				1978
B-17-2	2.5	6.73	<5	10.4	67	OF

AB= Aggregate Base Material

PF= Park Fill

OF= Intact Old Fill

1978= 1978 Fill

No note for native soil.

Table 2. Summary of Soil Results for pH and Arsenic, Lead, and Zinc (mg/kg).

Sample	Depth (feet)	pН	Arsenic	Lead	Zinc	Comments
TTLC			500	100 0	5000	
B-17-3	3					OF
B-17-4	4.5	7.76				
B-17 - 5	6	7.89				
B-17-6	9.5	7.94				
B-17-7	14.5					
B-18-1	1	8.08				1978
B-18-2	2.5	6.39	<5	7.47	68.4	OF
B-18-3	4					OF
B-18-4	4.5	7.03				
B-18-5	7.5	7.57				
B-18-6	10.5	7.43				
B-18-7	12.5	7.56				
B-18-8	15					
B-19-1	1	7.67	<5	11.6	64.4	1978
B-19-2	3	3.65	<5	20.2	72.4	OF
B-19-3	4.5					OF
B-19-4	5.5	4.10		7.48	61.5	OF
B-19-5	6					
B-19-6	8.5	7.10		8.22	44.3	
B-19-7	11	7.56				
B-19-8	13					
B-19-9	16					
B-20-1	0.5	7.61				OF
B-20-2	2	7.37	5.14	13.6	73.2	OF
B-20-3	3.5	7.48				
B-20-4	6	8.13				
B-20-5	6.5	8.10				
B-20-6	9.5	7.79				
B-20-7	11.5	7.92				
B-20-8	14.5					
B-21-1	0.5					PF
B-21-2	1.5	7.29	<5	91	56.7	OF
B-21-3	3	7.44	<5	111	60.1	OF
B-21-4	6	7.12	5.89	8.61	41.4	1
B-21-5	6.5					1

AB= Aggregate Base Material PF= Park Fill OF= Intact Old Fill 1978= 1978 Fill No note for native soil.

Table 2. Summary of Soil Results for pH and Arsenic, Lead, and Zinc (mg/kg).

Sample	Depth (feet)	pН	Arsenic	Lead	Zinc	Comments
TTLC			500	1000	5000	
B-21-6	8.5	7.49	<5	5.68	47	
B-22-1	0.5	6.93	6.81	115	133	PF
B-22-2	3	7.94	5.59	319	42.4	OF
B-22-3	3.5	7.86	<5	18	47.9	OF
B-22-4	7.5	3.63	8.81	<5	68.3	
B-22-5	8					
B-23-1	0.5	6.26	12.6	1100	113	PF
B-23-2	2.5	7.74	6.04	1310	73.1	PF
B-23-3	5.5	7 .17	<5	10.4	38.7	OF
B-23-4	8	7.32	<5	6.21	37.8	
B-24-1	0.5	4.08	9.2	<5	177	AB?
B-24-2	2.5	5.27	34.2	10.7	51.7	
B-24-3	3	7.02	8.7	5.86	44.1	
B-24-4	5.5	7.12	6.5	5.87	46.8	
B-24-5	7.5	7.28	10.3	<5	52.1	
B-25-1	0.5	5.91	<5	8.0	65.5	AB?
B-25-2	1	6.85	<5	7.5	44.8	OF
B-25-3	2.5	7.20	<5	5.88	47.1	
B-25-4	3					
B-25-5	4.5*					
B-25-6	5	7.24	17.1	7.77	49.2	
B-25-7	7	7.70	6.04	6.62	53.8	
B-26-1	0.5	6.59	6.91	12.6	83	1978
B-26-2	3	7.30	<5	8.07	54.5	OF
B-26-3	6	7.73	<5	8.09	44.4	
B-26-4	8	7.52	<5	6.83	51.7	
COURT-1		3.0	397	594	291	AB
COURT-2		2.8	734	692	443	AB (C)

Note: Shading indicates result greater than TTLC.

AB= Aggregate Base Material PF= Park Fill OF= Intact Old Fill

1978= 1978 Fill

(C) = Composite sample

No note for native soil.

Table 2. Summary of Soil Results for pH and Arsenic, Lead, and Zinc (mg/kg).

Sample	Depth (feet)	pН	Arsenic	Lead	Zinc	Comments
TTLC			500	1000	5000	
CRACK-1		1.5	14.4	5.5	7450	PPT (C)
CRACK-A		2.4	29.6	16.1	6080	PPT
CRACK-B		2.1	11.7	18.3	6790	PPT
CRACK-C		1.9	23.0	28.2	6200	PPT
CRACK-D		1.4	7.4	14.9	7990	PPT
CRACK-E		1.5	33.0	9.3	8380	PPT
CRACK-F		1.9	8.4	35.1	4320	PPT
CRACK-G		1.5	9.7	19.7	6260	PPT (D)
CRACK-H		1.6	22.4	15.9	6110	PPT
CRACK-J		1.4	25.7	18.5	5820	PPT (D)

Note: Shading indicates result greater than TTLC.

AB = Aggregate Base Material

PF = Park Fill

OF = Intact Old Fill

PPT = Precipitate

1978 = 1978 Fill

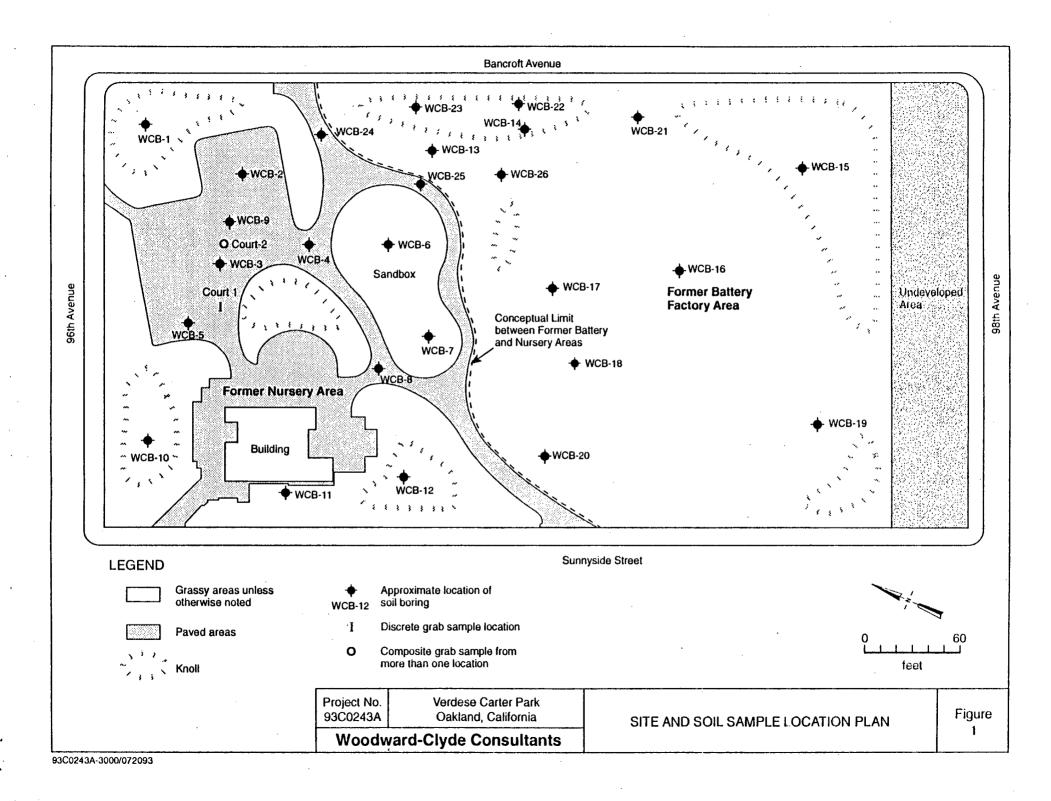
(C) = Composite sample

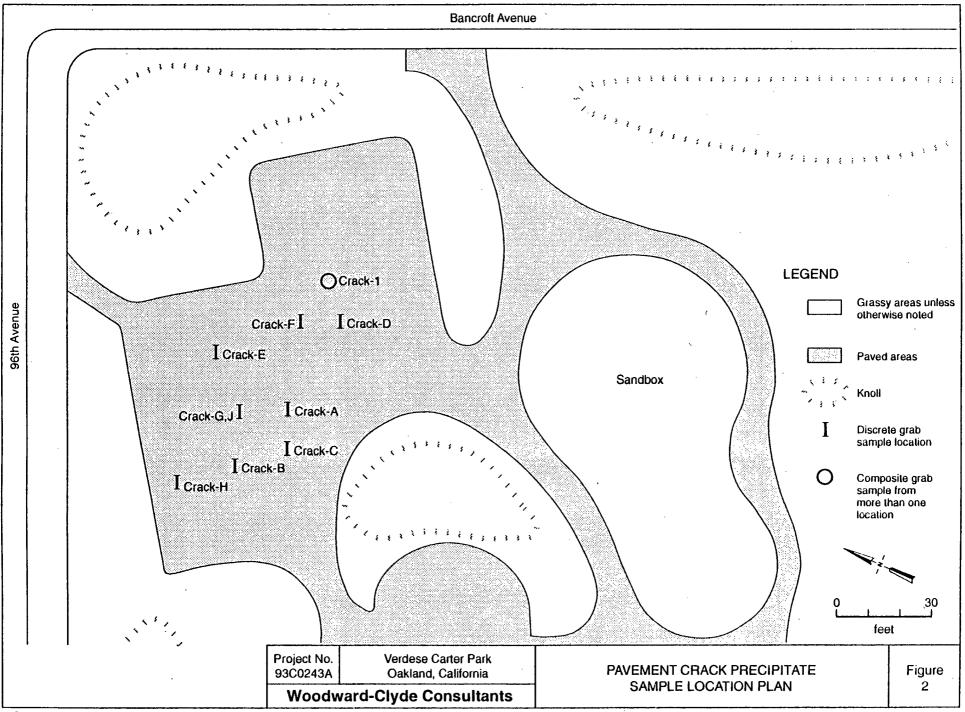
(D) = Paired duplicate sample

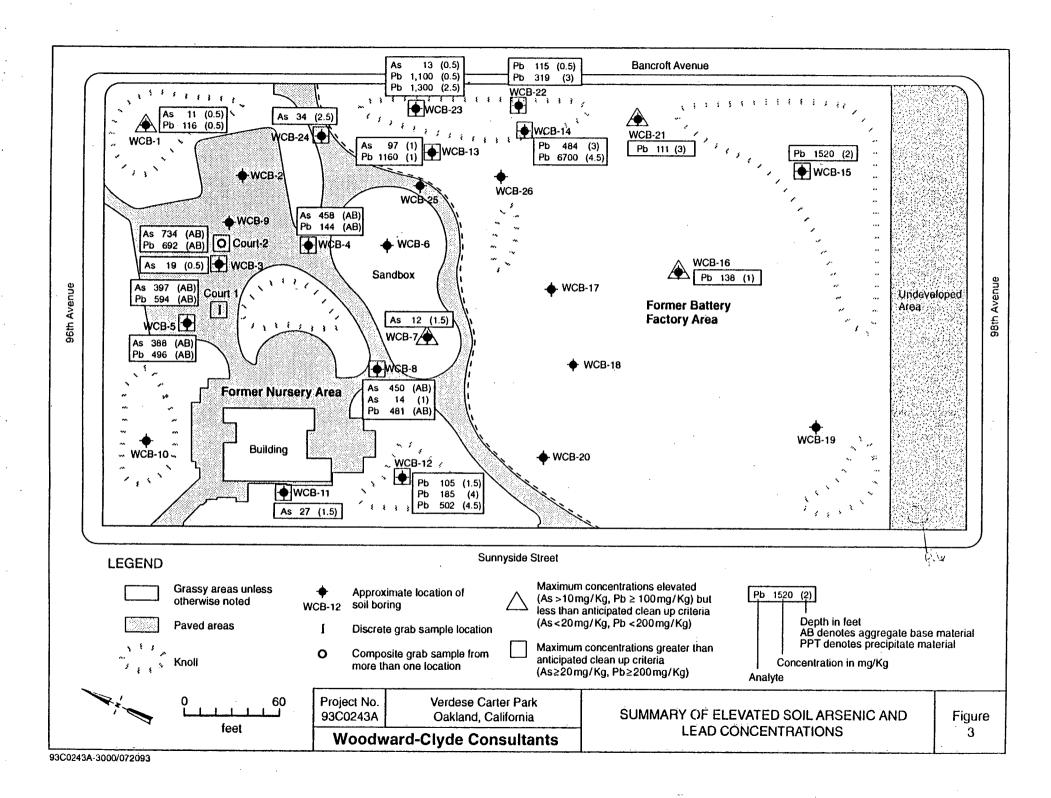
No note for native soil.

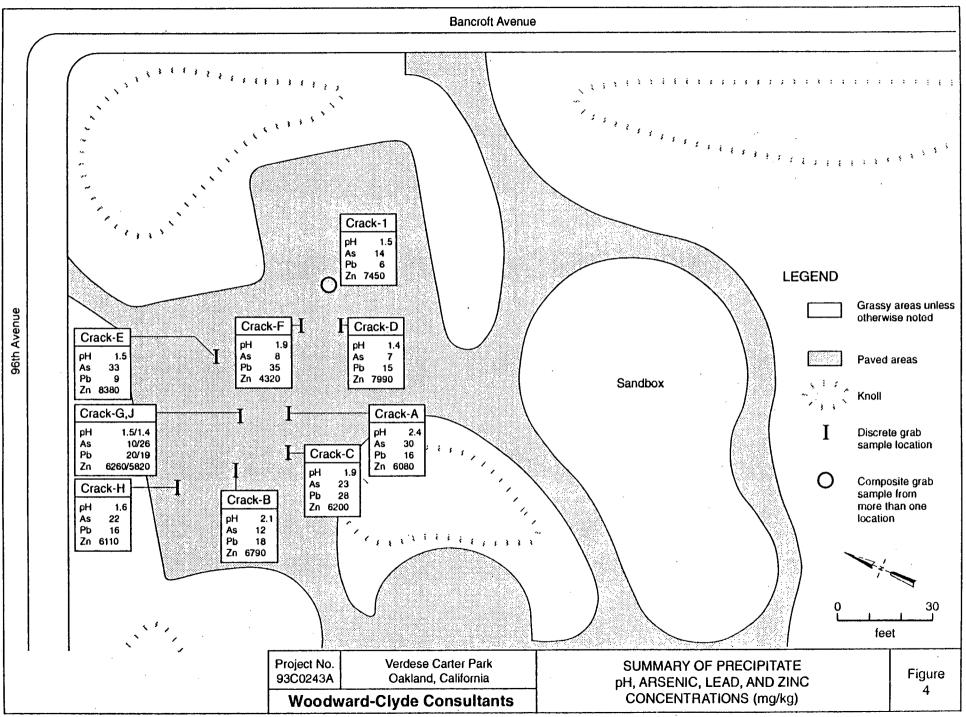
^{*} Sample contained slough from above; results are not representative of actual conditions.

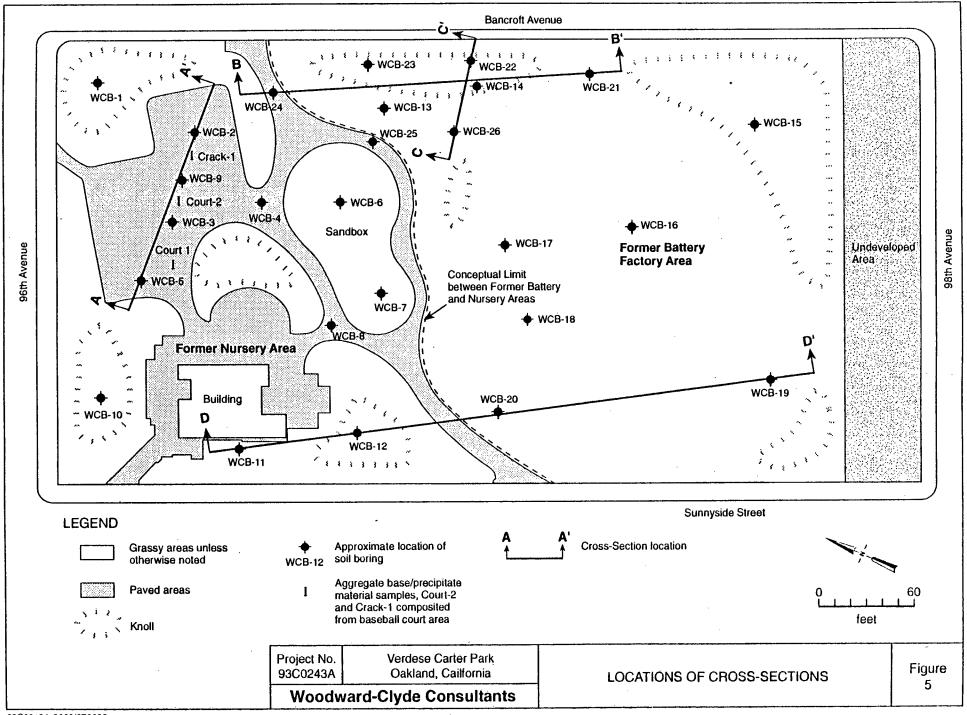
TABLE 3-SUMMARY OF SOIL RESULTS FOR SOLUBLE METALS (mg/L).

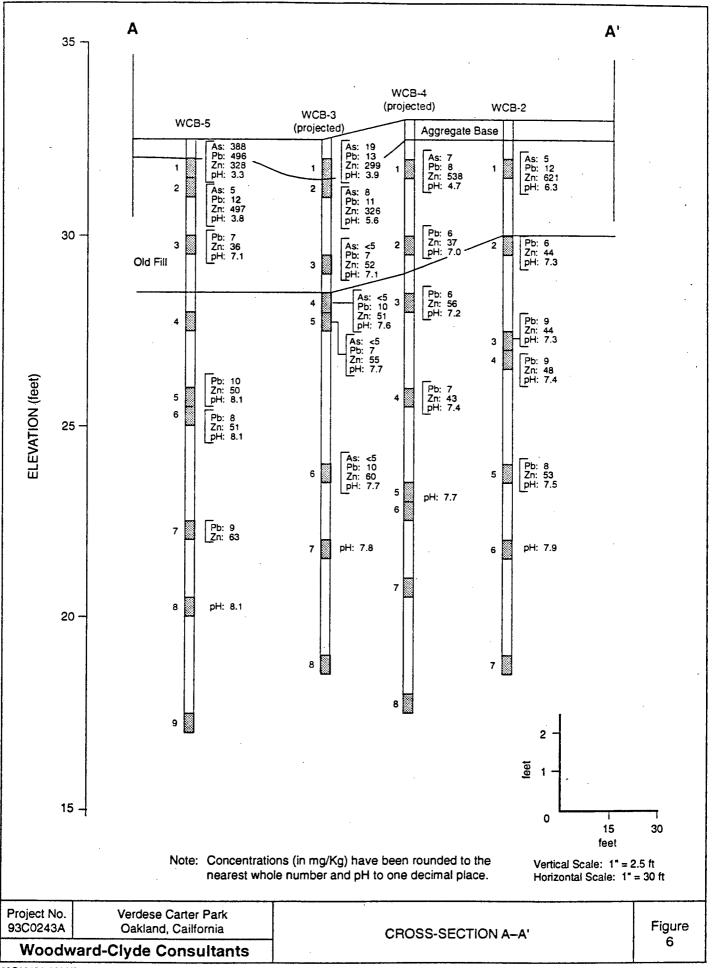

Sample	Arsenic	Lead	Mercury	Zinc	Comments
otti C	5	5	0.2	250	
STLC COURT2/WET	8.8	0.4	<0.005	4.1	AB
COURT2/DIWET	<0.05	<0.03	<0.005	3.31	AB

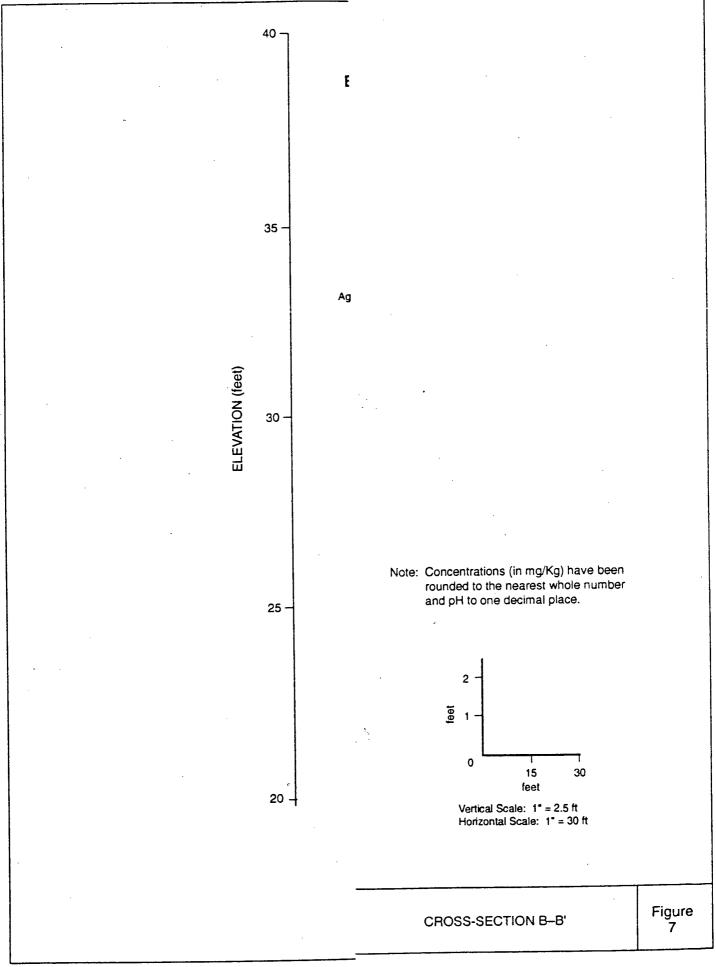

Note: Shading indicates result greater than STLC.

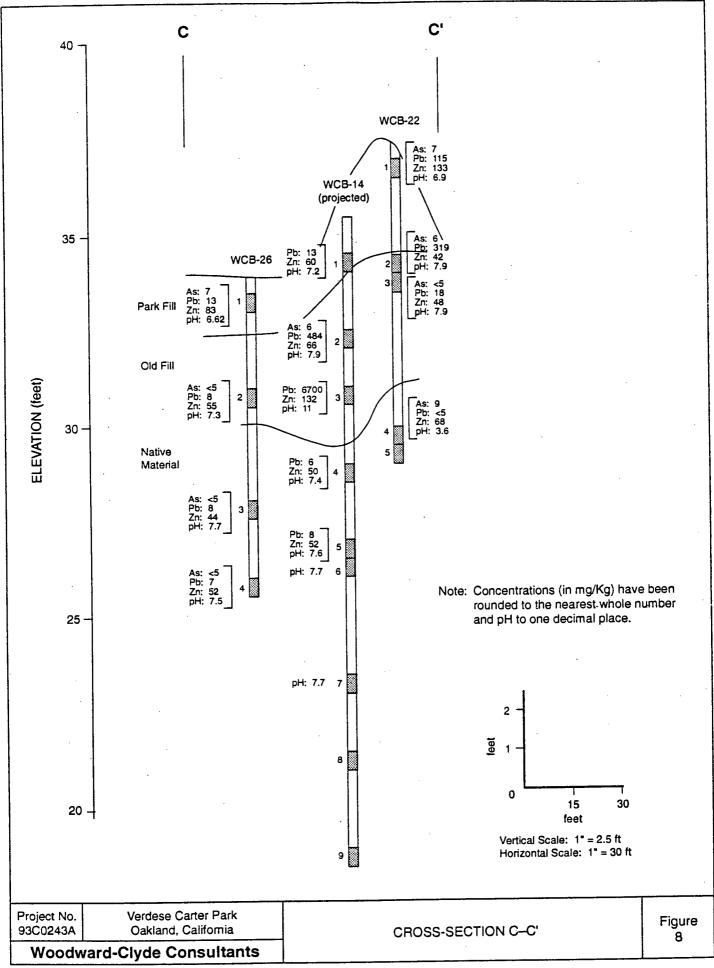

AB= Aggregate Base Material

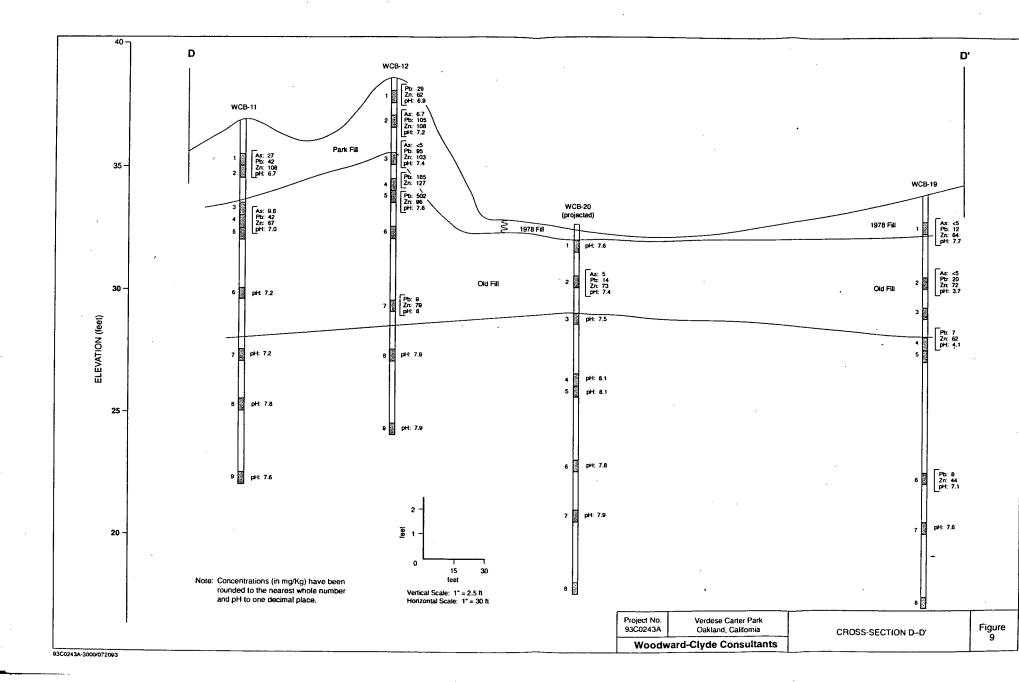

WET= soluble metal concentrations by California Analytical Method Waste Extraction Test (WET Test)

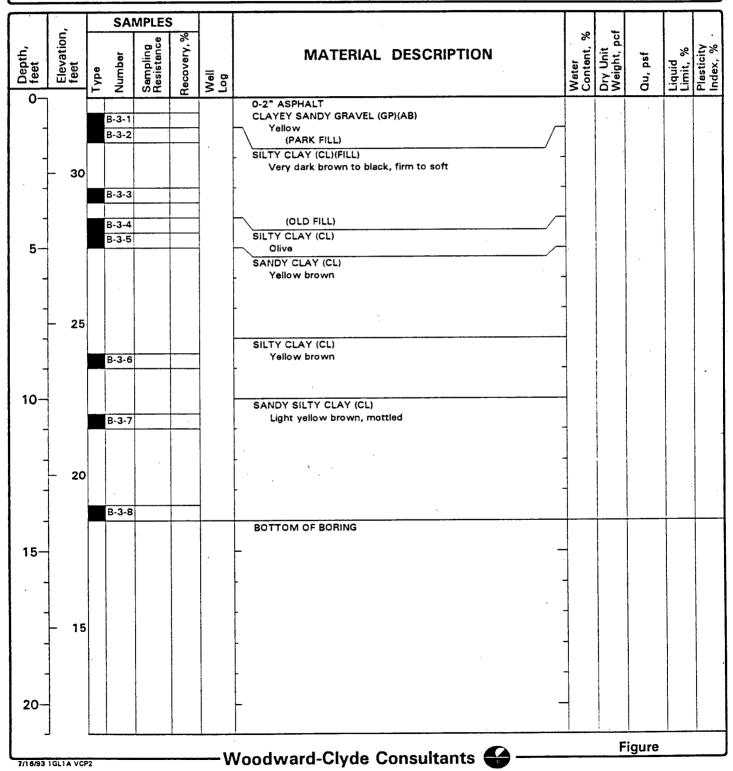

DIWET= Modified WET test using deionized water instead of standard citrate solution.









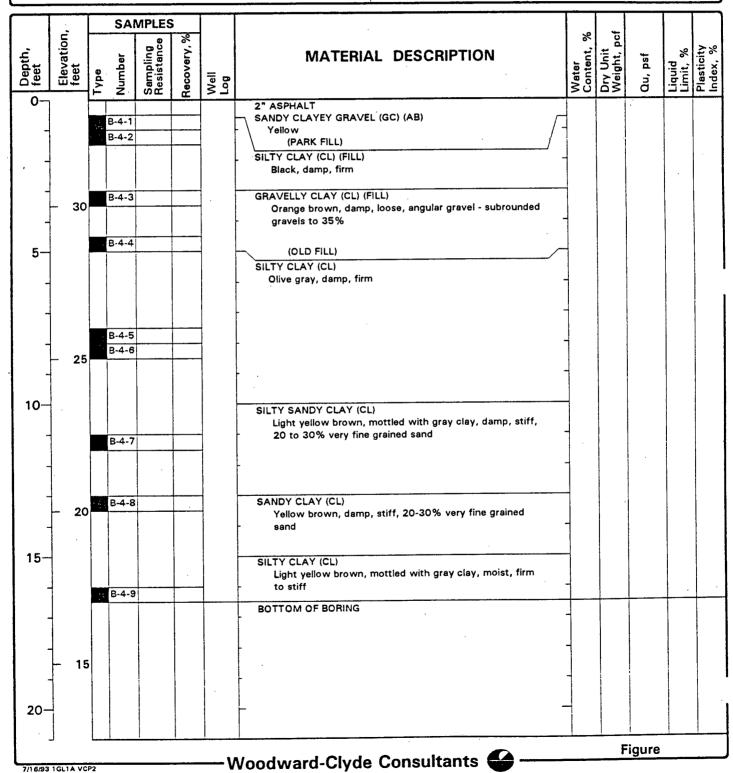


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-3

Date(s) Drilled	5/14/93	Logged By	W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Typ	8		Total Depth Drilled (feet) 14.0
Drill Rig Type	CME 55	Drilled By	HEW		Borehole Cement Grout Backfill
Apparent Groundwater	Depth ft ATD	ft after	days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler			Surface 33 Elevation (feet)	Elevation Datum

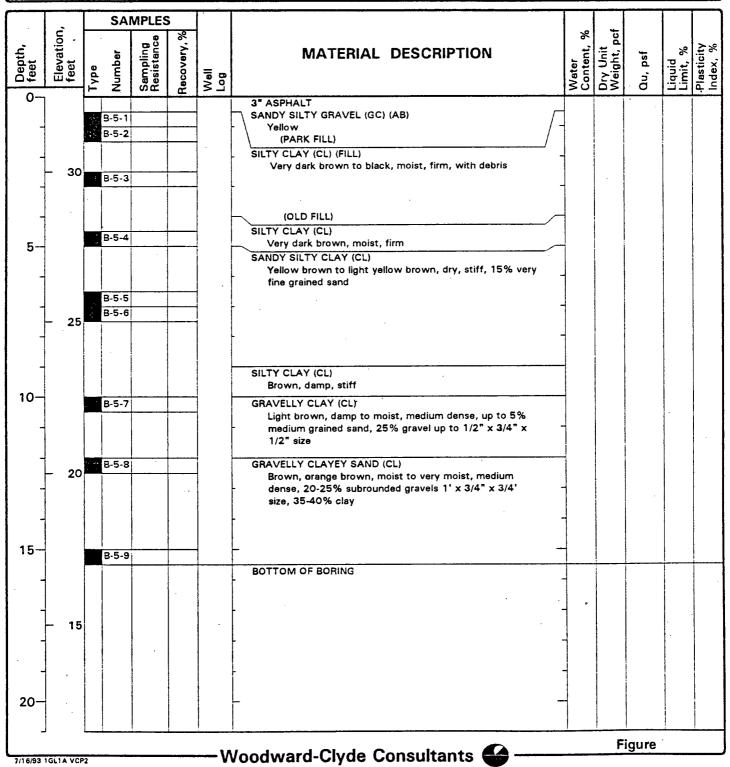


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-4

Date(s) Drilled	5/13/93	Logged W. Los	kutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 16.5
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 34 Elevation (feet)	Elevation Datum

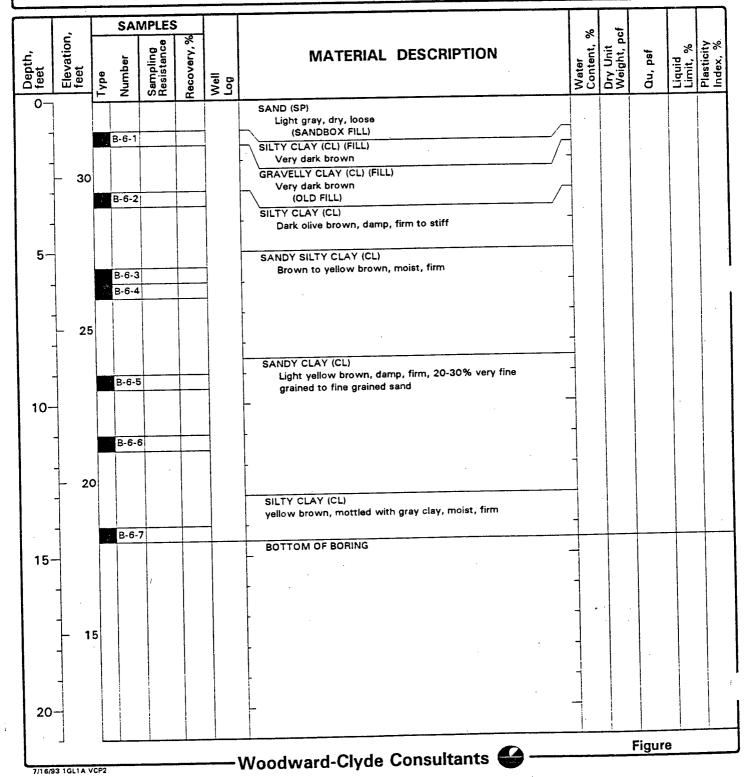


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-5

Date(s) Drilled	5/12/93	Logged W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 15.5
Driil Rig Type	CME 55	Drilled HEW	·	Borehole Cement Grout Backfill
Apparent Groundwate	r Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 33	Elevation Datum

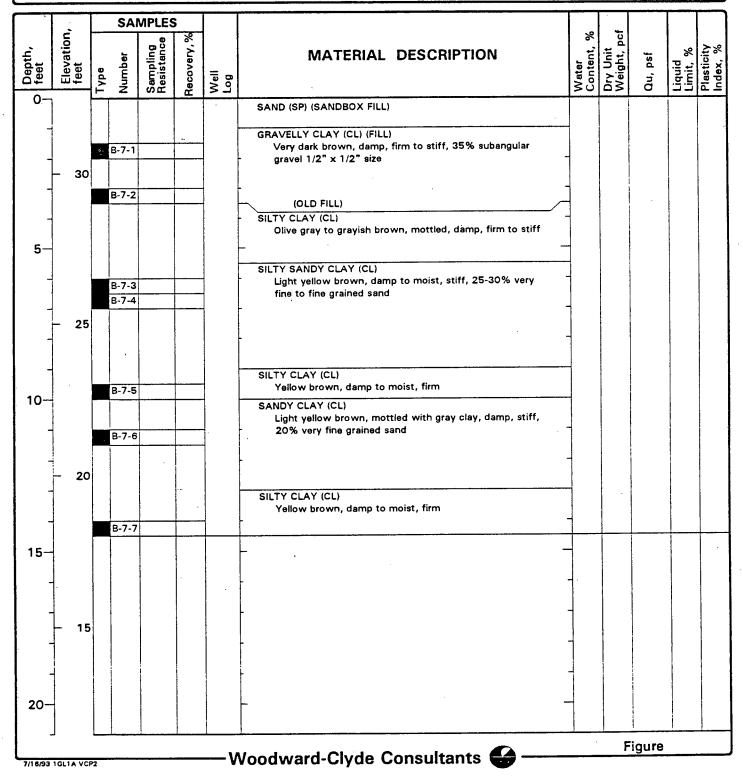


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-6

Date(s) Drilled	5/14/93	Logged W. Loskut	Checked M. McGuire
Drilling	Hollow Stem Auger	Drill Bit Size/Type	Total Depth Drilled (feet) 14.5
Method Drill Rig	CME 55	Drilled HEW	Borehole Cement Grout Backfill
Type Apparent	n ft ATD	for fine days H	ammer Hammer Weight/ ype Drop (lbs/in.)
Groundwate Comments	Mod. Cal Drive Sampler	Si	urface levation Datum

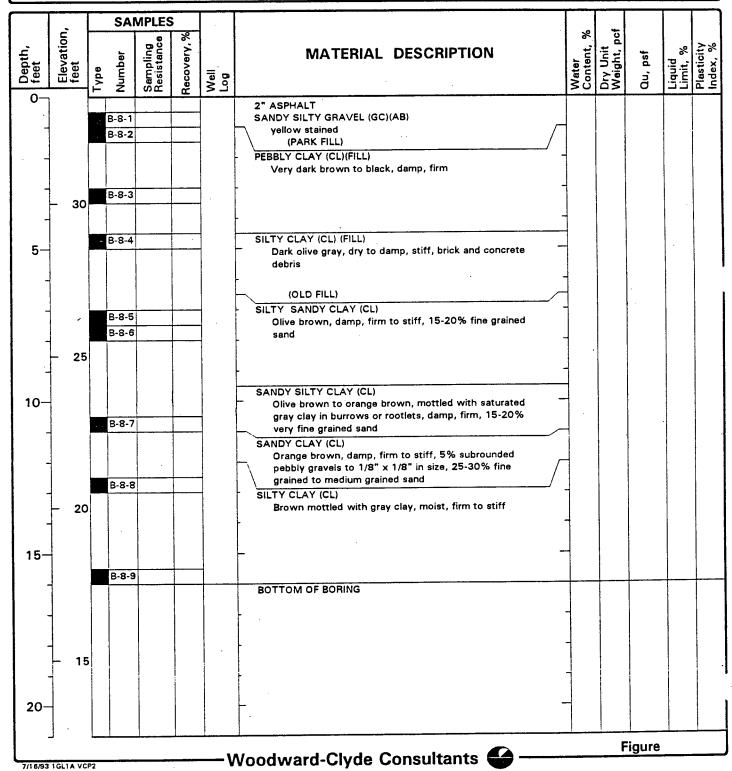


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-7

Date(s) Drilled	5/14/93	Logged By	W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Ty			Total Depth Drilled (feet) 14.5
Drill Rig Type	CME 55	Drilled By	HEW	•	Borehole Cement Grout Backfill
Apparent Groundwater	Depth ft ATD _	ft after	days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler			Surface Elevation (feet) 33	Elevation Datum

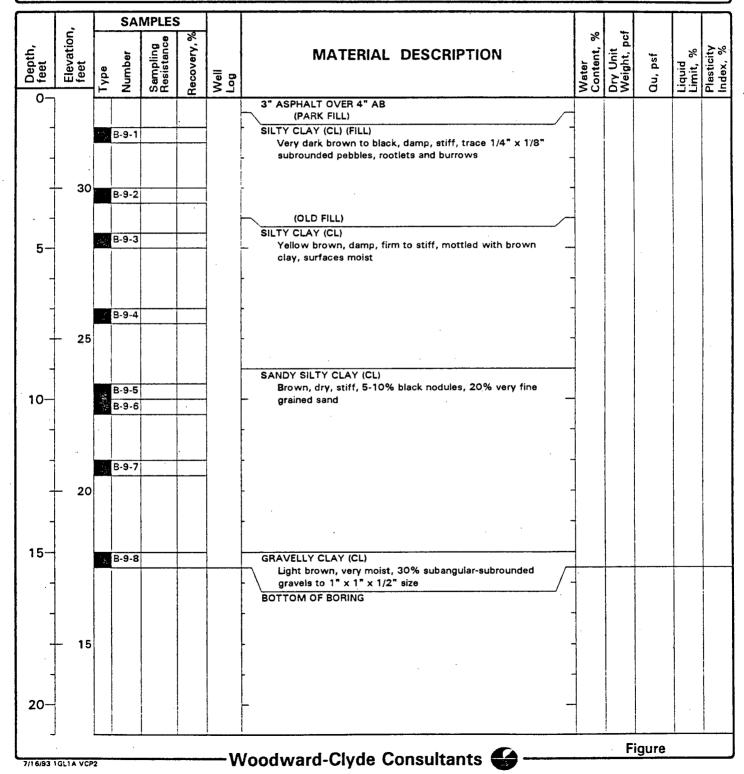


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-8

Date(s) Drilled	5/13/93	Logged W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 16.0
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	r Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 34	Elevation Datum

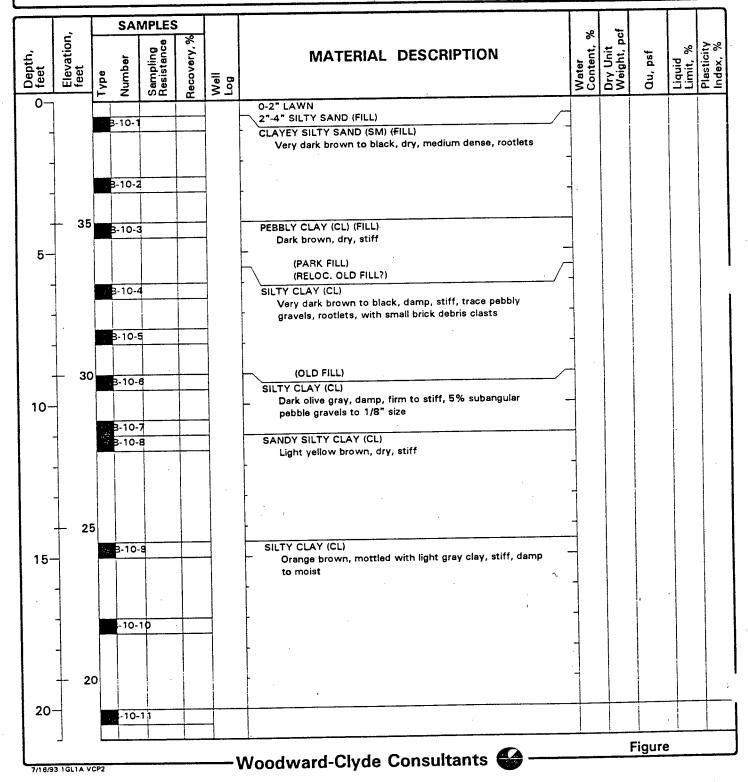


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-9

Date(s) Drilled	5/12/93	Logged W. Los	kutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 15.5
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 33	Elevation Datum

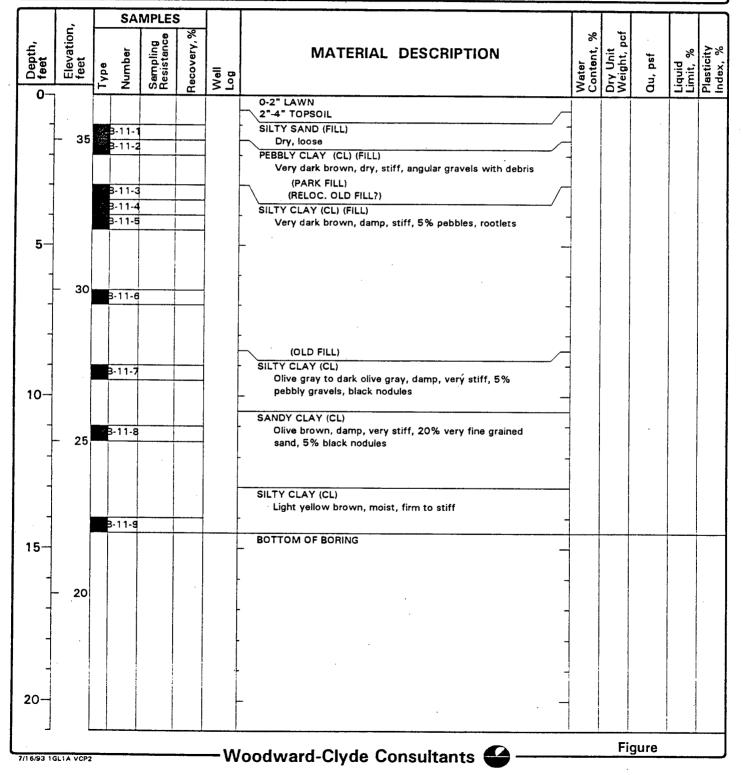


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-10

Date(s) Drilled	5/12/93	Logged W. Loski	utoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 20.5
Drill Rig	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent	or Donth ft ATD		Hammer Type	Hammer Weight/ Drop (lbs/in.)
Groundwate Comments	Mod. Cal Drive Sampler		Surface Elevation (feet)	Elevation Datum

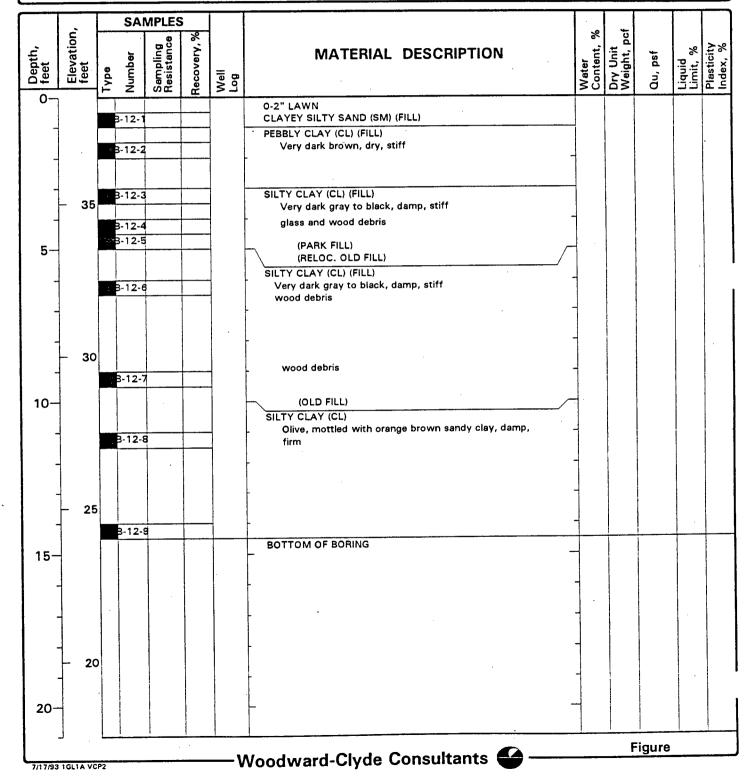


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-11

Date(s) Drilled	5/13/93	Logged W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 14.5
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD _	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 37	Elevation Datum

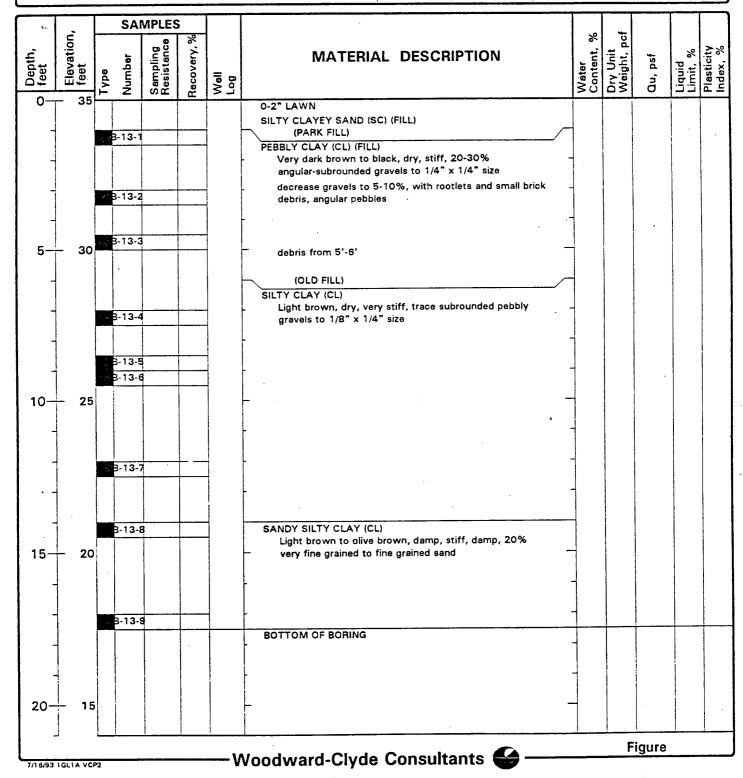


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-12

Date(s) Drilled	5/13/93	Logged W. Los	kutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 14.5
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 39 Elevation (feet)	Elevation Datum

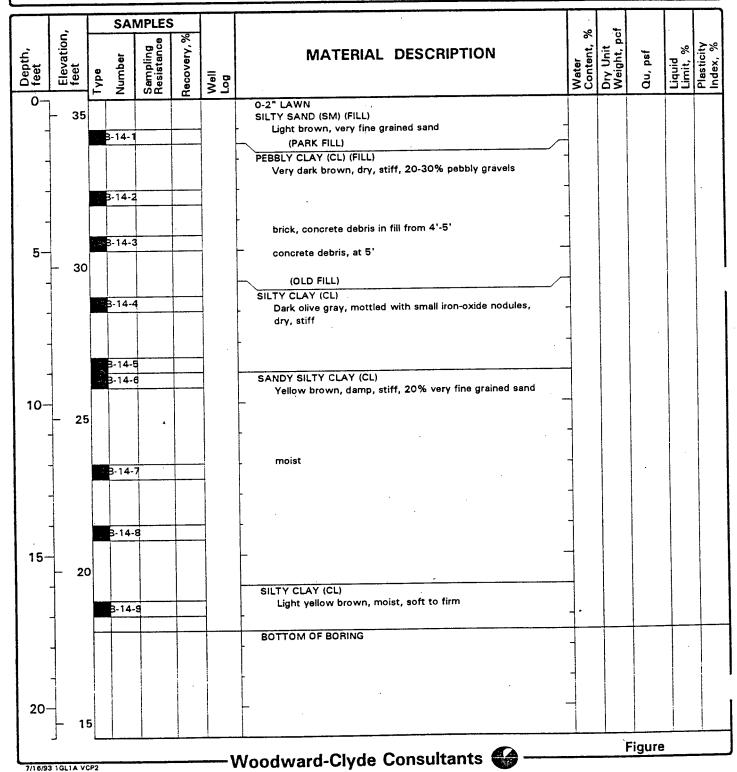


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-13

Date(s) Drilled	5/11/93	Logged W. Lo	oskutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 17.5
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 35	Elevation Datum

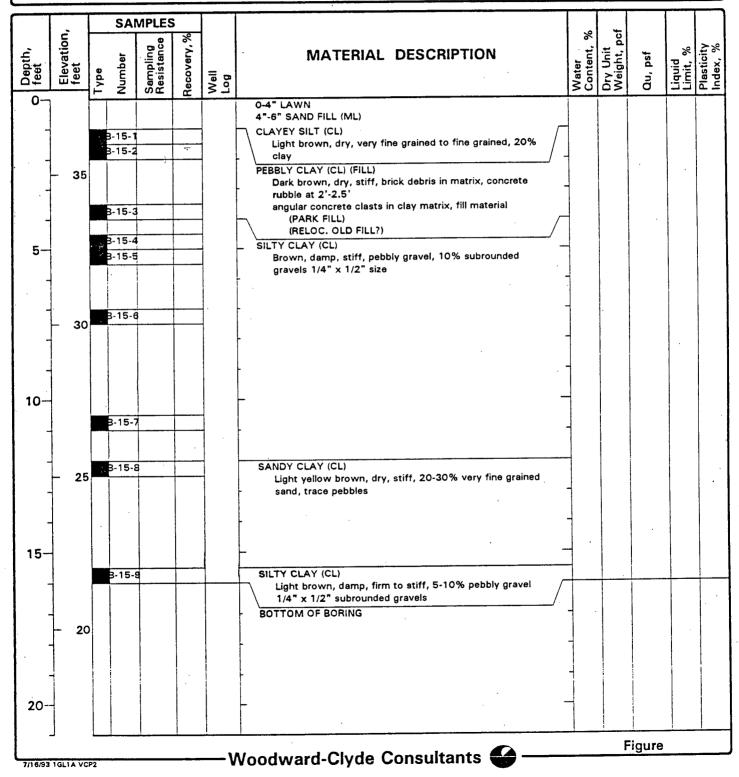


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-14

Date(s) Drilled	5/11/93	Logged W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth 17.5
Drill Rig	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Type Apparent Groundwate	er Denth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 36	Elevation Datum

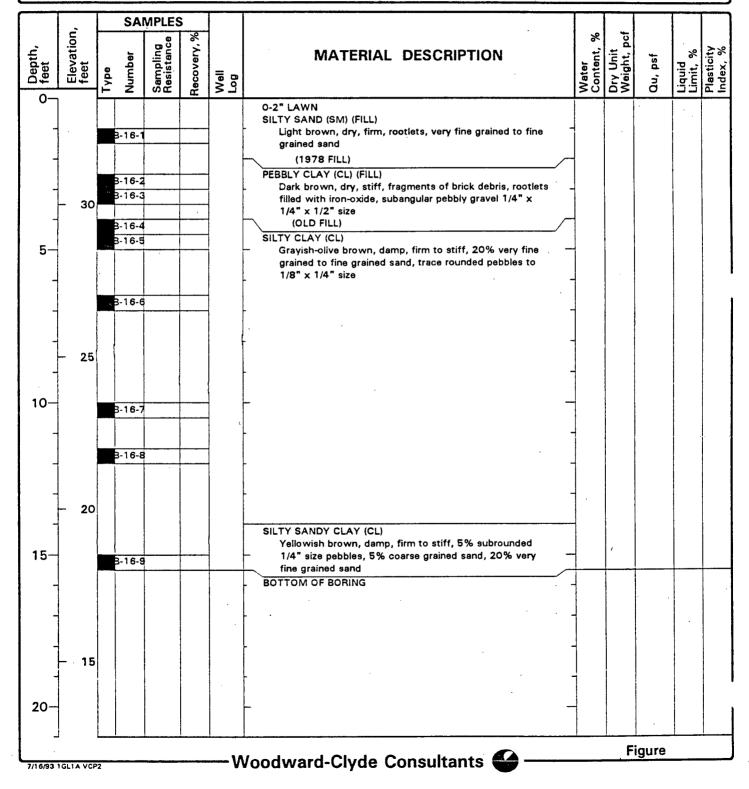


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-15

Date(s) Drilled	5/10/93	Logged W. L	oskutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 16.0
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwater	Depthft ATD _	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 38	Elevation Datum

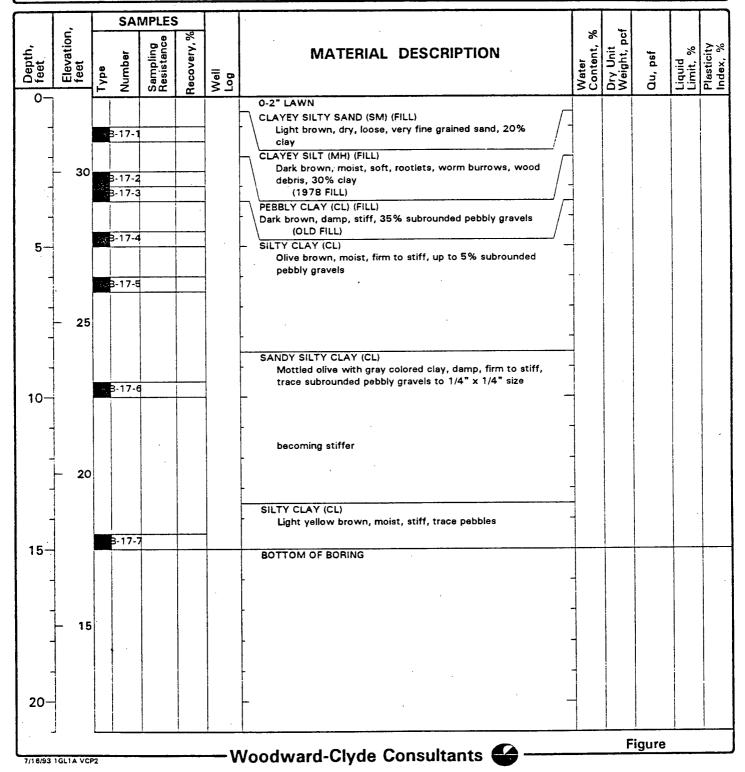


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-16

Date(s) Drilled	5/10/93	Logged W. Los	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 15.5
Drill Rig Type	CME 55	Drilled HEW By		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 34	Elevation Datum

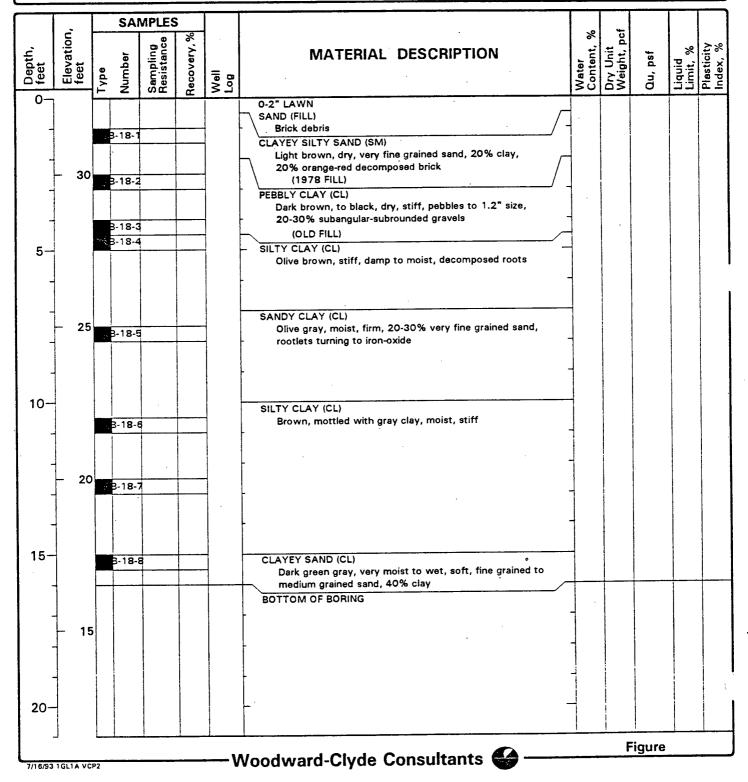


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-17

Date(s) Drilled	5/11/93	Logged W.	Loskutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 15.0
Drill Rig Type	CME 55	Drilled HE	W	Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after day	s Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 33 Elevation (feet)	Elevation Datum

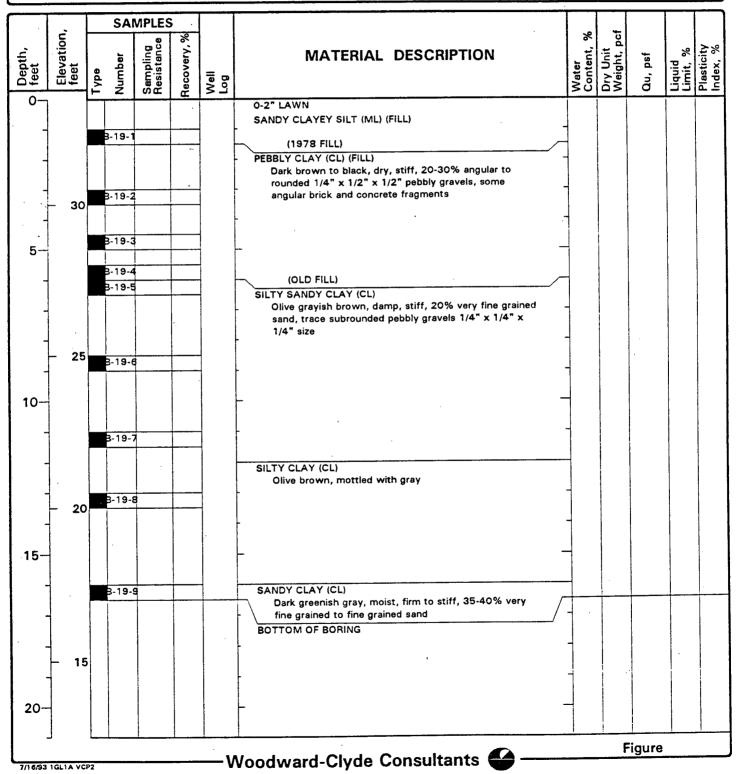


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-18

Date(s) Drilled	5/10/00	Logged W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 16.0
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	r Depth ft ATD _	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 33	Elevation Datum

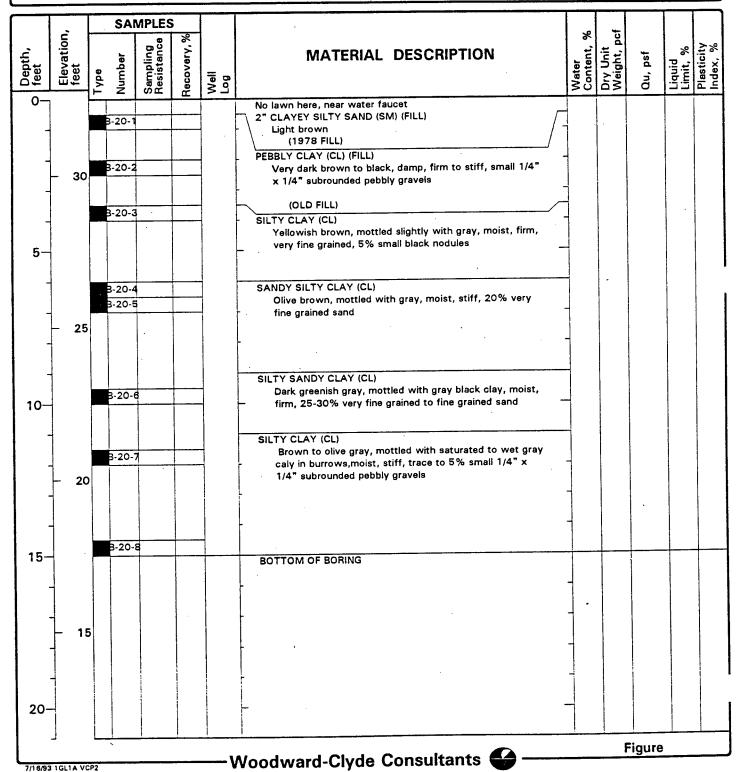


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-19

Date(s) Drilled	5/10/93	Logged W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth 16.5
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD _	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 34 Elevation (feet)	Elevation Datum

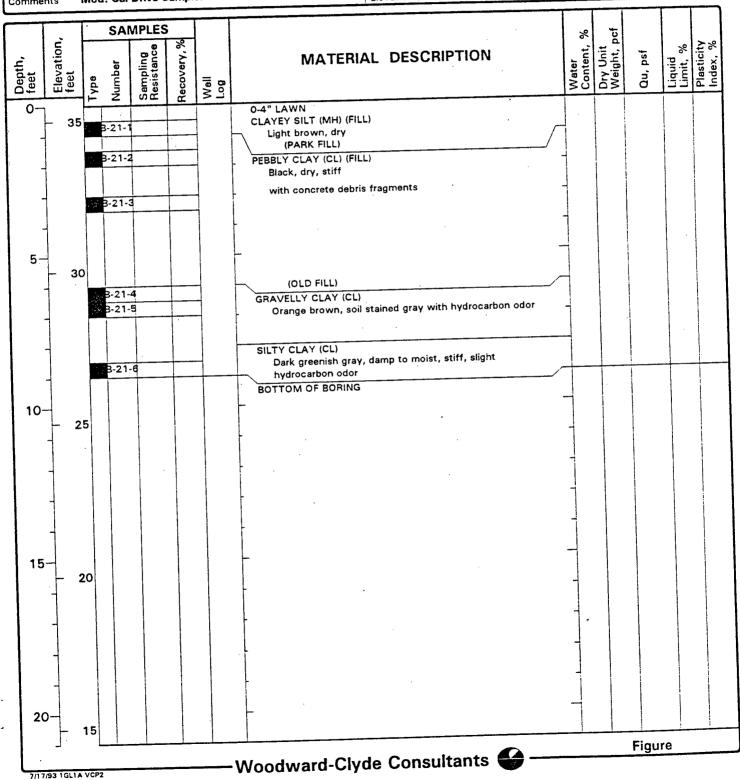


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-20

Date(s) Drilled	5/11/93	Logged W. L	oskutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 15.0
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 33 Elevation (feet)	Elevation Datum



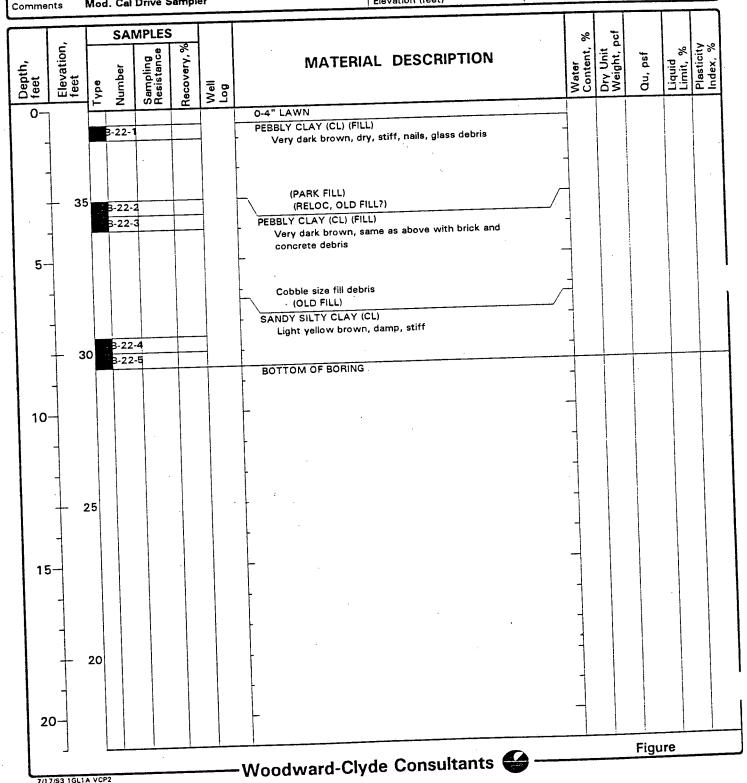
Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-21

Date(s)	6/24/93	Logged W. Lo	skutoff	Checked M. McGuire
Drilled Drilling	Hollow Stem Auger	Drill Bit Size/Type		Total Depth 9.0 Drilled (feet)
Method Drill Rig	CME 75		Sierra	Borehole Cement Grout Backfill
Type	ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Groundwate	er Depth		Surface 36 Elevation (feet)	Elevation Datum

Verdese Carter Park Project:

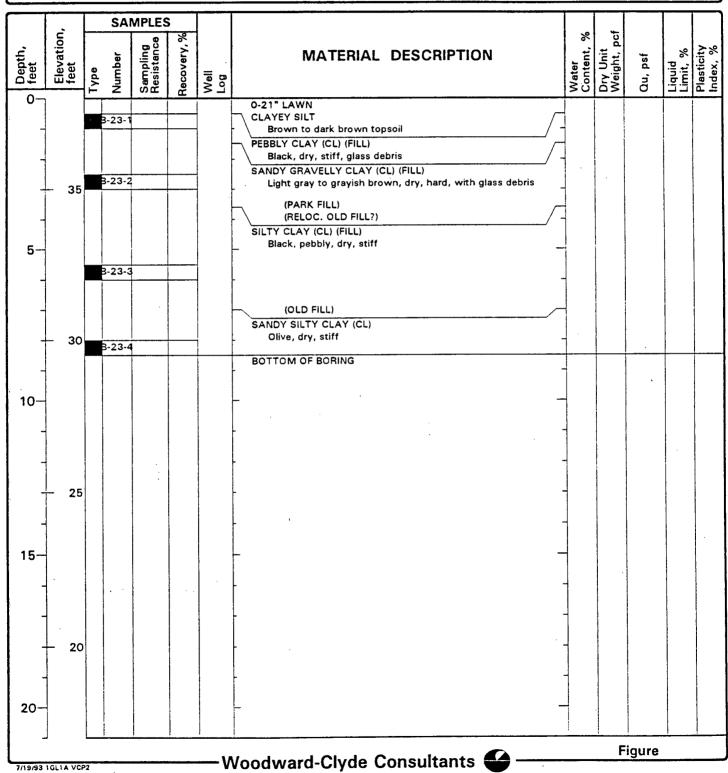

Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

7/17/93 1GL1A VCP2

Log of Boring WCB-22

Date(s)	6/24/93	Logged W. Los	kutoff	Checked M. McGuire
Orilled Orilling		Drill Bit		Total Depth 8.5
Method	Hollow Stem Auger	Size/Type Drilled Great		Borehole Cement Grout
Drill Rig	CME 75	Drilled Great		Backfill Hammer Weight/
Type Apparent	ft ATD	ft after days	Hammer Type	Drop (lbs/in.)
Groundwat	er Depth Sempler		Surface 38 Elevation (feet)	Elevation Datum

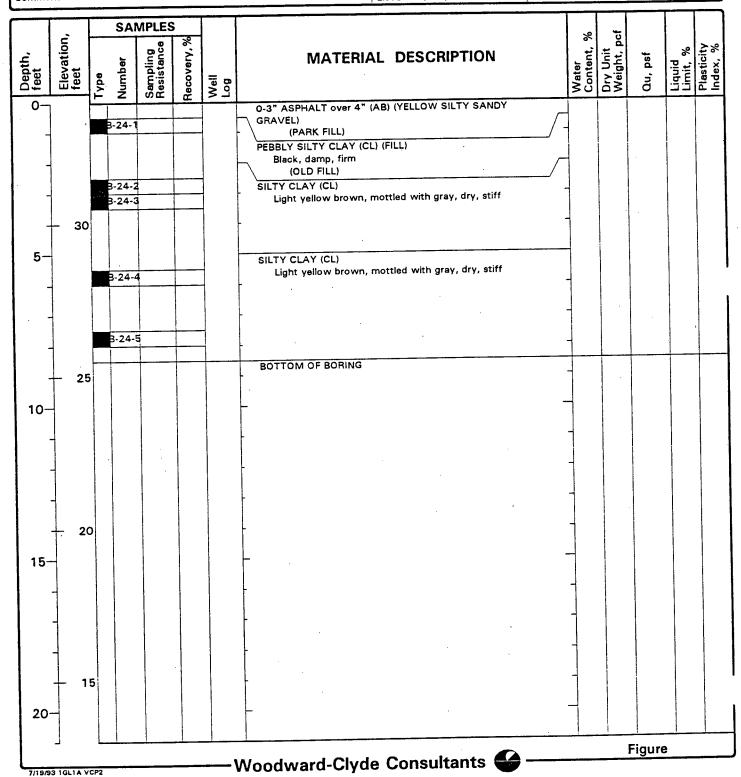


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-23

Date(s) Drilled	6/24/93	Logged By	W. Los	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Ty			Total Depth Drilled (feet) 8.5
Drill Rig Type	CME 75	Drilled By	Great	Sierra	Borehole Cement Grout Backfill
Apparent Groundwate	r Depth ft ATD	ft after	days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler			Surface 38 Elevation (feet)	Elevation Datum

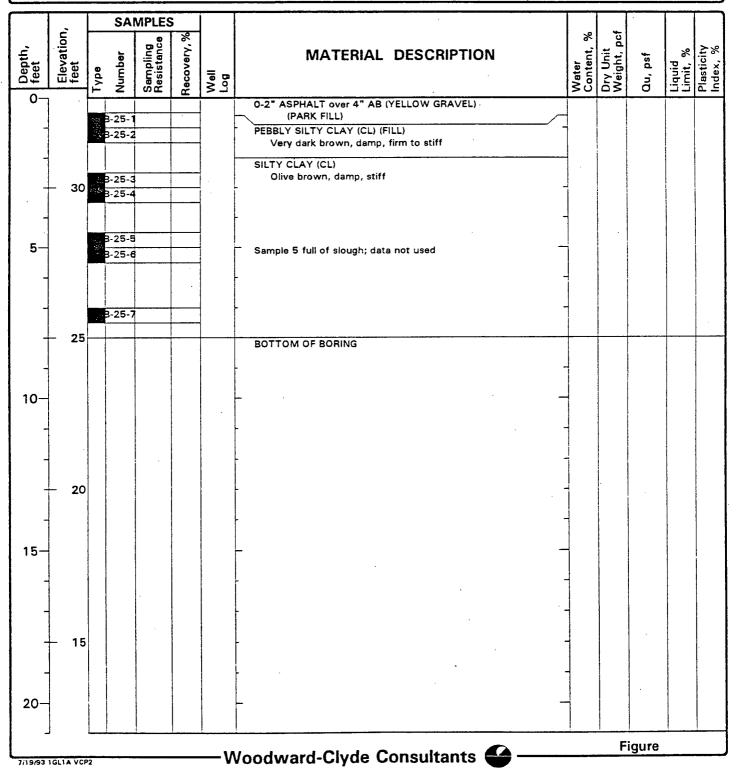


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-24

Date(s) Drilled	6/24/93	Logged W. Loskutoff By		Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth 8.5 Drilled (feet)
Drill Rig	CME 75	Drilled Great	Sierra	Borehole Cement Grout Backfill
Apparent	or Donth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Groundwate Comments	Mod. Cal Drive Sampler		Surface 34 Elevation (feet)	Elevation Datum



Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-25

Date(s) Drilled	illing Hollow Stem Auger ill Rig CMF 75		Logged By Drill Bit Size/Type Drilled By Great Sierra		Checked M. McGuire
Drilling Method					Total Depth Drilled (feet) 8.0 Borehole Cement Grout Backfill
Drill Rig Type					
Apparent Groundwater	Depth ft ATD	ft after	days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler			Surface Elevation (feet) 33	Elevation Datum

Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-26

Date(s) Drilled	6/24/93	Logged W. Los	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 8.5 Borehole Cement Grout Backfill
Drill Rig Type	CME 75	Drilled Great S	Sierra	
Apparent Groundwate	r Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 34 Elevation (feet)	Elevation Datum

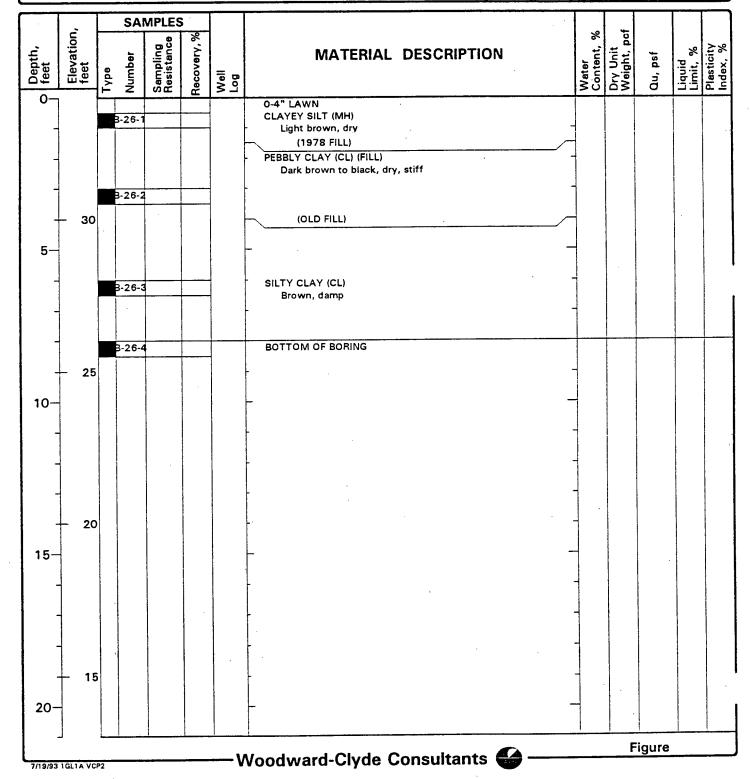


Table 4. Summary of Results for Sulfide and Sulfate (mg/kg).

Comple	Sulfide	Sulfate	Comments
Sample		l	
COURT-1	< 0.20	2,160	AB (C)
CRACK-A	<1.0	245,000	PPT
CRACK-B	<1.0	295,000	PPT
CRACK-C	<1.0	320,000	PPT
CRACK-D	<1.0	279,000	PPT
CRACK-E	<1.0	294,000	PPT
CRACK-F	<1.0	289,000	PPT
CRACK-G	<1.0	366,000	PPT (D)
CRACK-H	<1.0	299,000	PPT
CRACK-J	<1.0	365,000	PPT (D)

Note:

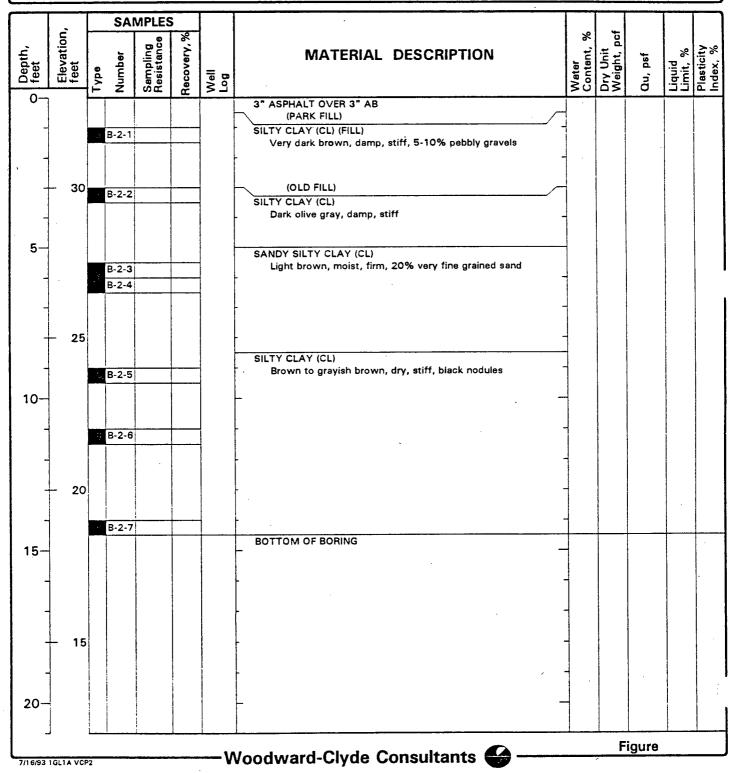
AB = Aggregate Base Material

PPT = Precipitate

(C) = Composite sample

(D) = Paired duplicate sample

Project: Verdese Carter Park


Project Location: 98th and Bancroft, Oakland

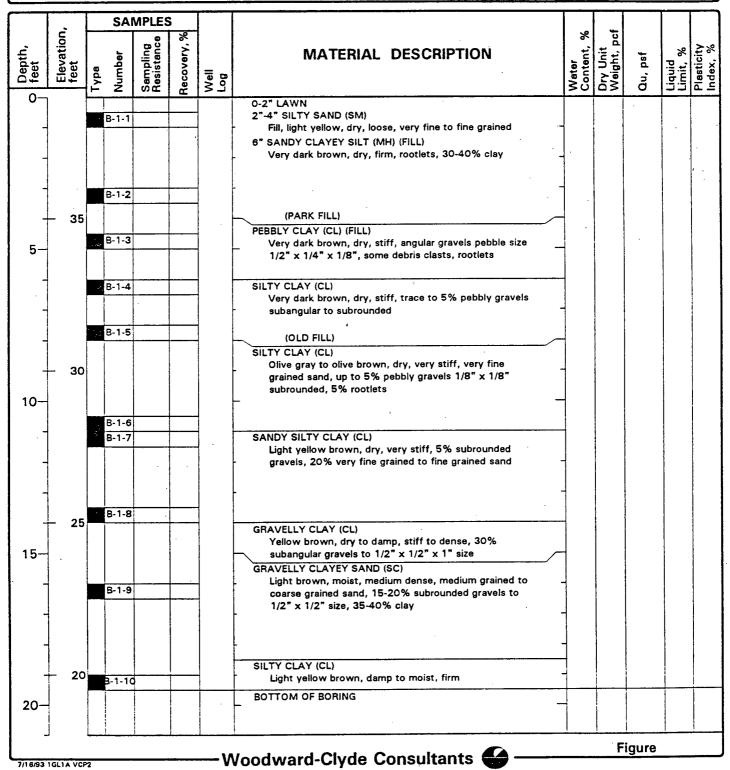
Project Number: 93C0243A

Log of Boring WCB-2

Sheet 1 of 1

Date(s) Drilled	5/12/93	Logged W. Lo	skutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type	,	Total Depth Drilled (feet) 14.5
Drill Rig Type	CME 55	Drilled HEW		Borehole Cement Grout Backfill
Apparent Groundwater	Depth ft ATD	ft after days	Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface Elevation (feet) 33	Elevation Datum

Project: Verdese Carter Park


Project Location: 98th and Bancroft, Oakland

Project Number: 93C0243A

Log of Boring WCB-1

Sheet 1 of 1

Date(s) Drilled	5/13/93	Logged W.	Loskutoff	Checked M. McGuire
Drilling Method	Hollow Stem Auger	Drill Bit Size/Type		Total Depth Drilled (feet) 19.5
Drill Rig Type	CME 55	Drilled HE	w	Borehole Cement Grout Backfill
Apparent Groundwate	er Depth ft ATD	ft after day	s Hammer Type	Hammer Weight/ Drop (lbs/in.)
Comments	Mod. Cal Drive Sampler		Surface 39 Elevation (feet)	Elevation Datum

Introduction

Soil and water samples collected for this investigation were analyzed by CKY Laboratory, located in Torrance, California and ATI Laboratory located in San Diego, California. The samples were analyzed for Title 22 metals (EPA Methods 6010/7000 series), pH (EPA Method 9045), organochlorine pesticides (EPA Method 8080), organophosphorus pesticides (EPA Method 8140), and chlorinated herbicides (EPA Method 8150). One sample was extracted using the WET citrate and the WET deionized water extraction method. The extracts were analyzed for arsenic, mercury, lead, and zinc. The soil and water analytical results for this project were submitted to a thorough QA/QC review. The review included the following:

- Holding Time Review Check for exceedences of prescribed holding times.
- Blank Review Review blank analyses for evidence of potential contaminants
- Spike Review Review spike recoveries and spike duplicate relative percent differences as a check for analytical precision and accuracy.
- Duplicate Review Review duplicate analyses for agreement of results as a check for analytical precision.
- Surrogate Review Review surrogate recoveries for possible matrix interferences.

Each of the above QA/QC checks is discussed in detail in this section.

Holding Time Review

Analytical methods used for this study have an associated prescribed holding time, that is the maximum amount of time after collection that a sample may be held prior to extraction and/or analysis. Sample integrity becomes questionable for samples extracted and/or analyzed outside of the holding times owing to physical and chemical changes to the sample such as degradation or volatilization. Results of such analyses are suspect. The holding times for all samples for all analyses were reviewed. Holding times were met for each of the analyses.

Blank Review

Blank samples are analyzed in order to check for potential sample contamination. Information regarding the source of contamination may also be gained by analyzing a variety of blanks prepared at several points during sample collection and analysis. The blanks analyzed for this project included the following:

- Method Blanks Deionized, distilled water that is extracted and analyzed as a sample.
 Analysis of the method blank indicates potential sources of contamination from laboratory sources (e.g. contaminated reagents, improperly cleaned laboratory equipment, or persistent contamination due to presence os certain compounds in the ambient laboratory air). method blank was analyzed for each analytical method at least once every day that the method was used.
- Equipment Blanks A blank that is prepared in the field by pouring distilled water into sampling equipment, then into sample containers. Usually, the equipment blank is submitted to the laboratory 'blind' (under a fictitious location designation).

Analysis of the equipment blank indicates potential sources of contamination of samples from improperly cleaned sampling equipment or sample containers or from ambient air contamination. One equipment blank was collected with the groundwater samples. The equipment blanks were analyzed for full the suite of analyses.

The reported method blanks were ND for each of the analyses. Thus, laboratory conditions are considered acceptable. One equipment was collected and labeled VCPEQB. The equipment blank was analyzed for the full suite of analyses. The results for the equipment blank were ND. Thus, equipment decontamination procedures are considered acceptable.

Spike Review

Spikes are performed in order to evaluate the efficiency of the sample extraction and analysis procedures. Spikes are performed in the form of matrix spikes and reagent spikes. Matrix spikes are necessary as matrix interference (that is, interferences from the sample matrix water, soil, or other) which may have widely varying impacts on the accuracy and precision of the extraction and analysis. The matrix spike is prepared by the addition of known quantities of target analytes to a sample. The sample is extracted and analyzed. The results of the analysis are compared with the known additions and a matrix spike recovery is calculated. The recovery gives an evaluation of the accuracy of the extraction and analysis procedures. Typically matrix spikes are performed in duplicate in order to also evaluate the precision of the methods. Matrix spike recoveries are reviewed to check that they are within acceptable range. However, the acceptable ranges vary widely according to analytical method and matrix. The reagent spike, sometimes referred to as Laboratory Control Sample (LCS) are necessary to monitor accuracy only. The reagent spike is prepared similarly to the matrix spike, except a control (contaminant free) matrix is used in place of the sample matrix. The recovery of the reagent spike gives an evaluation of laboratory accuracy independent of matrix interferences.

The matrix spike recoveries for metals ranged from 0 to 290 percent. Some recoveries were outside the project defined control limits. However, the laboratory noted that in each case where a matrix spike recovery was outside of the limits, the corresponding LCS recovery was within the limit. The laboratory therefore attributed each of the recoveries outside of the project accuracy limits to matrix interference. Samples with out of limit matrix spike recoveries listed on Table 1 should be viewed as estimated values, as the detected result may have been subject to matrix interference. The matrix spike recoveries for the organic analyses (Method 8080, 8140, and 8150) ranged from 0 to 128 percent. Sample B-9-1 Method 8150 matrix spike recovery for phorate was 0 percent and was outside control limits. The laboratory considered this to be an anomalous result because the associated LCS and surrogate recoveries were acceptable. The LCS recovery ranges were within the project established acceptable ranges, for each of the analyses as were the other matrix spike recoveries. Laboratory accuracy is considered acceptable.

Typically reagent spikes are performed in duplicate in order to also evaluate the precision of the methods using reagent spike duplicate recovery relative percent differences (RPDs) calculated as:

RPD = [(Result 1 - Result 2)/ (Average of Result 1 and Result 2)] X 100

The reported matrix spike duplicate recovery RPDs for organic analyses ranged from 7 to 25 percent. The RPD's indicate acceptable precision. It should be noted inorganic precision was assessed through laboratory duplicate analyses.

Duplicate Analyses

Analysis of duplicates gives an evaluation of sampling and analytical precision. Laboratory duplicates (duplicate analyses performed on two aliquots of the same sample) reflect analytical precision which field duplicates (two samples collected at the same time and the same station in the field) reflect both sampling and analytical precision as well as sample media heterogeneity. Field duplicates are generally submitted to the laboratory "blind" (with a fictitious name so that the laboratory does not know they are duplicates).

The laboratory performed metal and pH analyses in duplicate, to evaluate precision and matrix homogeneity. The metal RPD's ranged from 0 to 61 percent, see Table 2. The laboratory attributed the out of limit RPD's to matrix (soil) and target compound heterogeneity. The pH RPD's ranged from 0 to 2 percent, indicating acceptable precision and minimal to no heterogeneity

for pH.

Eighteen blind duplicate soil samples were collected and analyzed for a variety of analyses. Each of the duplicate pairs are listed on Table 3. Also included on Table 3, are the detection limit, detected concentration, and calculated RPD. Blind duplicate metal RPD's ranged from 0 to 179 percent. Duplicate analyses again showed compound stratification and matrix heterogeneity. Data associated with an RPD above 30 percent should be viewed as an estimated value, as the compound is likely stratified within the matrix. The duplicate metal results indicate compound and matrix heterogeneity. The pH RPD's ranged from 0 to 36 percent. The RPD's above 20 percent represent heterogenous samples. The organic analysis results were each reported to be ND. Thus results are in agreement.

Surrogate Recoveries

Surrogates are organic compounds which are similar to the analytes of interest in chemical behavior, but which are not normally found in environmental samples. Surrogates are added to samples to monitor the effect of the matrix on the accuracy of the analysis. Surrogates are only used for organic analyses. Results are reported in terms of percent recovery. The reported surrogate recoveries for this investigation were within laboratory established limits. Matrix interferences should be considered minimal for the organic analyses.

QA/QC Summary

The data for the investigation has been subjected to an extensive QA/QC review, and has been found to be of satisfactory quality with limitations. Holding times were met for all sample analyses. No evidence of method blank contamination was found in any method blank analyses. Equipment blank sample VCPEQB was reported to be ND, thus equipment decontamination procedures are considered acceptable. The matrix spike analyses indicate matrix interference for metal analyses. Matrix spike and spike duplicate analyses for organic analyses indicate minimal to little matrix interference and acceptable accuracy. Laboratory and blind duplicate samples were not completely in agreement for metal analyses, indicating likely compound stratification and matrix heterogeneity. Surrogate recoveries were within laboratory established limits, indicating minimal to no matrix effect on the analysis results.

In summary, the results of the QA/QC review show that the data set has acceptable analytical accuracy and precision, with limitations to the use of the metals data due to compound stratication and matrix heterogeneity.

Table 1. Matrix Spike Recoveries Outside of Project Limits

Sample I.D.	Method	Compound	Recovery	Limit
B-25-1	EPA 6010/7000	Arsenic	40	75 - 125
	EPA 6010/7000	Lead	39	75 - 125
B-21-1	EPA 6010/7000	Arsenic	50	75 - 125
B-15-2	EPA 6010/7000	Lead	190	75 - 125
B-5-1	EPA 6010/7000	Arsenic	-25	75 - 125
	EPA 6010/7000	Lead	-100	75 - 125
	EPA 6010/7000	Zinc	163	75 - 125
B-7-1	EPA 6010/7000	Antimony	39	75 - 125
	EPA 6010/7000	Arsenic	138	75 - 125
	EPA 6010/7000	Barium	290	75 - 125
	EPA 6010/7000	Selenium	0	75 - 125
	EPA 8150	Phorate	0	40 - 140
B-15-4	EPA 6010/7000	Antimony	37	75 - 125
	EPA 6010/7000	Copper	48	75 - 125
	EPA 6010/7000	Selenium	41	75 - 125
B-21-2	EPA 6010/7000	Lead	61	75 - 125

Table 2. Laboratory RPDs Outside of Project Limits

Sample I.D.	Method	Compound	RPD (a)	Limit
B-5-1	EPA 6010/7000	Arsenic	41	20
•	EPA 6010/7000	lead	. 81	20
B-8-4	EPA 6010/7000	Zinc	29	20
B-7-1	EPA 6010/7000	Arsenic	21	20
	EPA 6010/7000	Barium	61	20
	EPA 6010/7000	Chromium	25	20
	EPA 6010/7000	Vanadium	34	20
B-15-2	EPA 6010/7000	Lead	30	20
B-15-4	EPA 6010/7000	Cobalt	25	20
	EPA 6010/7000	Copper	47	20
	EPA 6010/7000	Zinc	23	20
B-25-1	EPA 6010/7000	Arsenic	40	20
	EPA 6010/7000	Lead	39	20
B-21-2	EPA 6010/7000	Arsenic	50	20

a - Relative percent difference

Table 3. Carter Park Blind Field Soil Duplicate RPDs

Sample I.D.s	Parameter	Detection Limit mg/kg	Detected Values mg/kg		RPD (a)
			7.32	7.30	0
B-2-3/B-2-4	pH	• ,	5.78	8.8	2
	Lead	5	3.76 44.1	44.4	8
	Zinc	. 5	44.1	44.4	J
			8.14	8.14	0
B-5-5/ B-5-6	pН	5	10.1	8.4	18
	Lead	5	49.7	51.2	3
	Zinc	3	-75. 7	J 1,2	_
D 10 4/D 10 5	Lead	5	185	502	92
B-12-4/B-12-5	Zinc	5	127	95.5	28
	ZIIC	J			
D 4 5/D 4 6	Lead	5	6.09	6.37	4
B-4-5/ B-4-6	Zinc	5	53	62.9	17
	Zuc	J			•
D 1 6/D 1 7	pН	•	8.23	8.25	0
B-1-6/ B-1-7	pii				
B-4-4/ B-4-5	pН	-	7.05	7.5	6
D-4-4/ D-4-3	pii				
B-16-2/B-2-3	Antimony	15	ND	ND	-
D-10-2/D-2-3	Arsenic	5	ND	ND	-
	Barium	2.5	240	148	47
	Berryllium	0.75	ND	ND	-
	Cadmium	1	ND	ND	•
	Chromium	2.5	6.3	52.4	157
	Cobalt	2.5	10.2	8.91	14
		1	40.7	38.7	5
•	Copper Lead	5	8.87	6.97	24
		0.05	ND	ND	-
	Mercury	2.5	ND	ND	
	Molybdenum	2.5	44.4	39.2	12
•	Nickel	15	ND	ND	-
	Selenium	1	ND	ND	-
	Silver	20	ND	ND	-
	Thallium	2.5	62.5	43.9	35
	Vanadium	2.3 5	52.4	49.7	5
	Zinc	J	J2	***	
		_	7.69	7.71	0
B-7-3/B-7-4	pH	5	ND	ND	•
	Arsenic	5 5	ND	7.92	-
	Lead	5	72.9	63.6	14
	Zind	J	, 40.7		
	TT	_	7.43	7.5 8	2
B-15-4 / B-15-5	pН	-			
	TT	_	7.44	6.99	6
B-16-2 / B-16-3	pН	-	••.		
D (0 1 D (1	-LT		7.90	7.87	. 0
B-6-3 / B-6-4	pН	_	•••		

Table 3. Carter Park Blind Field Soil Duplicate RPDs, concluded

Sample I.D.s	Parameter	Detection Limit mg/kg	Detected mg/kg		RPD (a)
B-3-4/ B-3-5	pН	-	7.59	7.66	1
D-3-4 D 3 3	Arsenic	5	ND	ND	-
	Lead	5	9.59	6.86	32
••	Zind	5 .	51.2	54.5	6
B-3-1/B-3-2	8080	0.010 - 0.10	ND	ND	-
	8140	0.050 - 0.10	ND	ND	-
	8150	0.005 - 4.0	ND	ND	•
	pН	•	3.87	5.58	36
	Antimony	15	ND	ND	-
•	Arsenic	5	18.8	8.1	80
,	Barium	2.5	224	244	90
	Berryllium	0.75	ND	•	-
	Cadmium	. 1	ND	•	•
	Chromium	2.5	59.1	60.5	2
	Cobalt	2.5	4.78	9.2	65
	Copper	1	78.3	38.5	68
	Lead	5	13.2	10.9	19
	Mercury	0.05	ND ·	0.06	-
	Molybdenum	2.5	ND	ND	<u>-</u>
	Nickel	2.5	30.6	44.5	37
	Selenium	15	ND	. ND	-
	Silver	1	ND	ND	•
	Thallium	20	ND	ND	-
	Vanadium	2.5	67.2	66.7	1
	Zinc	5	299	326	9
B-24-2 / B-24-3	pН	-	5.27	8.7	28
	Arsenic	5	34.2	5.86	119
	Lead	. 5	10.7	44.1	58
	Zinc	5	51.7		16
B-22-2 / B-22-3	pН	. •	7.94	7.86	1
•	Arsenic	5	5.59	ND	•
	Lead	5	319	18	179
	Zinc	5	42.4	47.9	12
B-20-4 / B-20-5	pH	-	8.13	8.10	.0
B-14-5 / B-14-6	pН	•	7.57	7.67	1
B-13-5 / B-13-6	рН	-	8.05	8.04	0

a - Relative percent difference RPD = (difference between values)/(average of values)*100

cc: M'Gove Arila Q Joekke L

C K Y incorporated Analytical Laboratories

Date: 06/28/93

93E057

Woodward Clyde Consultants 500 12th Street, Suite 100 Oakland, CA 946075

Attn: Mr. Michael McGuire

Subject: Additional Laboratory Report

Project: Carter Park/93C0243A.1

Enclosed is the additional laboratory report for samples received on 05/14/93. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. Additional analyses were requested on 06/11/93. The data reported includes:

Method

No. of Analysis

EPA 3050/6010 by ICP (Pb & Zn) EPA 3050/6010 by GFAA (As) 34 Soils 12 Soils

The results are summarized on forty pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Kam Y. Pang, Ph.D.

Laboratory Director

P.S. - All analyses requested for the above referenced project have been completed. Therefore, unless instructed, the remaining portions of the samples will be disposed after fifteen (15) days from the date of this report.

CASE NARRATIVE

CLIENT:

WOODWARD-CLYDE CONSULTANTS

PROJECT:

CARTER PARK

CKY BATCH:

93E057

Additional metal analyses for samples received on 05/14/93 were requested on 06/10/93. The analyses were in accordance with SW 846, USEPA 3rd Edition, 1986. Results were reported on wet weight basis.

- 1. Samples were homogenized before preparation for metal analyses according to instruction in the memo dated 06/10/93.
- 2. Metal analyses by Method 3050/6010/7000

Arsenic was analyzed by GFAA in most samples except 93E057-16, 64, and 73. These samples were analyzed by ICP because of the high As concentration. Lead and Zinc were analyzed by ICP. Method blanks, lab control samples, and calibrations were all within the control limits. Two sets of matrix spikes were analyzed. Recoveries in one set (93E057-67) were all within QC limit. In another matrix spike (93E057-16), all recoveries were out of QC limit. Their post digestive spikes were within QC criteria. The inhomogeneous samples with high metal concentrations were probably the cause. No corrective action was taken.

Two sets of duplicate samples were analyzed. As and Pb were outliners in sample 93E057-16 and Zn was an outliner in sample 93E057-67. The sample was reanalyzed and similar results were obtained. Since the method blank, lab control sample and lab control sample duplicates were all within control, no corrective action was taken.

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 DATE ANALYZED: 06/24/93 B-9-2 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E057-02 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	5.71
Zinc	5	36.8

Woodward-Clyde Consultants CLIENT: DATE COLLECTED: 05/12/93 Carter Park - 93C0243A PROJECT: DATE RECEIVED: 05/14/93 BATCH NO.: 93E057 DATE EXTRACTED: 06/15/93 DATE ANALYZED: SAMPLE ID: B-9-3 06/24/93 CONTROL NO.: 93E057-03 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE: NA

	Det Limit	RESULT
Element	(mg/kg)	(mg/kg)
Lead	5	6.32

5

55.6

Zinc

		:===========	======
CLIENT: PROJECT: BATCH NO.:	Woodward-Clyde Consultants	DATE COLLECTED:	05/12/93
	Carter Park - 93C0243A	DATE RECEIVED:	05/14/93
	93E057	DATE EXTRACTED:	06/15/93
SAMPLE ID:	B-9-4	DATE ANALYZED: MATRIX: DILUTION FACTOR:	06/24/93
CONTROL NO.:	93E057-04		Soil
% MOISTURE:	NA		1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	7.14
Zinc	5	43.3

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: Carter Park - 93C0243A 05/14/93 DATE RECEIVED: PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 SAMPLE ID: B - 2 - 2CONTROL NO.: 93E057-10 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead		5.78
Zinc	5	44.1

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 DATE ANALYZED: 06/24/93 B-2-3 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E057-11 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	8.8
Zinc	5	44.4

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants Carter Park - 93C0243A 05/14/93 DATE RECEIVED: PROJECT: DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 DATE ANALYZED: 06/24/93 B - 2 - 4SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E057-12 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	8.94
Zinc	5	48.3

	======================================	DATE COLLECTED:	05/12/93
-	Woodward-Clyde Consultants Carter Park - 93C0243A		05/14/93
FKOO DOI			06/15/93
BATCH NO.:	93E057 B-2-5	DATE ANALYZED:	06/24/93
SAMPLE ID:	2 -	MATRIX:	Soil
CONTROL NO.:		DILUTION FACTOR:	1
% MOISTURE:	NA ===============================	=====================================	

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5 5	8.43 52.6

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: DATE RECEIVED: Carter Park - 93C0243A 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 SAMPLE ID: B-5-1 MATRIX: Soil CONTROL NO.: 93E057-16 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit · (mg/kg)	RESULT (mg/kg)
Arsenic	5	388
Lead	5	496
Zinc	5	328

05/12/93 Woodward-Clyde Consultants DATE COLLECTED: CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO .: 06/24/93 DATE ANALYZED: B-5-3 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-18 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	7.45
7inc	5	30

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: 06/15/93 DATE EXTRACTED: 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-5-5 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-20 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
	5	10.1
Lead Zinc	5	49.7

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: DATE RECEIVED: Carter Park - 93C0243A 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 DATE ANALYZED: 06/24/93 B-5-6 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E057-21 DILUTION FACTOR: 1 % MOISTURE: NA

	RESULT (mg/kg)
Lead 5 Zinc 5	8.4

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 SAMPLE ID: B-5-7 Soil CONTROL NO.: 93E057-22 MATRIX: DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	· 5	9.02
Zinc	5	63.3

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: 05/14/93 DATE RECEIVED: Carter Park - 93C0243A DATE EXTRACTED: 06/15/93 PROJECT: 93E057 06/24/93 BATCH NO .: DATE ANALYZED: B-10-1 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-25 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead	5 5 5 5	10.2 52.7 164

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: DATE RECEIVED: Carter Park - 93C0243A 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 DATE ANALYZED: 06/24/93 SAMPLE ID: B-10-3 CONTROL NO.: 93E057-27 MATRIX:

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	7.43
Lead	· 5	37.6
Zinc	5	75.7

**Analyzed by GFAA

05/12/93 DATE COLLECTED: Woodward-Clyde Consultants CLIENT: 05/14/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-1-1 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-36 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
	5	11.1
Arsenic**	5	116
Lead		94.7
Zinc	J	

**Analyzed by GFAA

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-1-2 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-37 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)	
Arsenic**	5 5	10.4	
Lead Zinc		140	

^{**}Analyzed by GFAA

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 05/14/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-1-4 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E057-39 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	8.21
Zinc	5	41.8

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 05/14/93 Carter Park - 93C0243A PROJECT: 06/15/93 DATE EXTRACTED: 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-1-5 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E057-40 DILUTION FACTOR: 1 % MOISTURE: NA

RESULT Det Limit (mg/kg) (mg/kg) Element ND 5 Lead 41.1 5 Zinc

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO .: DATE ANALYZED: 06/24/93 SAMPLE ID: B-1-7 MATRIX: Soil CONTROL NO.: 93E057-42 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)		RESULT (mg/kg)	
Lead Zinc	 5 5		7.57 54.2	

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: 05/12/93
PROJECT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93
BATCH NO.: 93E057 DATE EXTRACTED: 06/15/93
SAMPLE ID: B-11-2 DATE ANALYZED: 06/24/93

SAMPLE ID: B-11-2 DATE ANALYZED: 06/24 CONTROL NO.: 93E057-47 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	27.4
Lead	5	46.3
Zinc	· 5	108

**Analyzed by GFAA

Woodward-Clyde Consultants 05/12/93 DATE COLLECTED: CLIENT: DATE RECEIVED: 05/14/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: 06/24/93 DATE ANALYZED: SAMPLE ID: B-12-1 Soil MATRIX: CONTROL NO.: 93E057-55 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
		29.1
Lead	5	61.7
Zinc	5	01.7

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: 06/15/93 DATE EXTRACTED: 93E057 BATCH NO.: 06/24/93 DATE ANALYZED: B-12-2 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-56 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)	
Arsenic** Lead Zinc	5 5 5	6.65 105 108	

**Analyzed by GFAA

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 05/14/93 Carter Park - 93C0243A PROJECT: 06/15/93 DATE EXTRACTED: 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-12-4 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-58 DILUTION FACTOR: 1 % MOISTURE: NA

Element Lead	Det Limit (mg/kg)	RESULT (mg/kg)
	5 5	185 127

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: DATE RECEIVED: PROJECT: Carter Park - 93C0243A 05/14/93 06/15/93 93E057 DATE EXTRACTED: BATCH NO.: DATE ANALYZED: 06/24/93 B-12-5 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E057-59 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	502
Zinc	5	95.5

05/12/93 Woodward-Clyde Consultants DATE COLLECTED: CLIENT: DATE RECEIVED: 05/14/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-12-7 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-61 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5 5	8.8 78.7

Woodward-Clyde Consultants CLIENT: DATE COLLECTED: 05/12/93 PROJECT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 93E057 BATCH NO.: DATE EXTRACTED: 06/15/93 SAMPLE ID: B-8-1 DATE ANALYZED: 06/24/93 CONTROL NO.: 93E057-64 MATRIX: Soil % MOISTURE: DILUTION FACTOR: 1 NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic	5	450
Lead	5	481
Zinc	5	309

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: 05/14/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 DATE ANALYZED: 06/24/93 SAMPLE ID: B-8-3 Soil MATRIX: CONTROL NO.: 93E057-66 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	ND 6.49 38.4

^{**}Analyzed by GFAA

DATE COLLECTED: Woodward-Clyde Consultants 05/12/93 CLIENT: DATE RECEIVED: Carter Park - 93C0243A 05/14/93 PROJECT: 06/15/93 DATE EXTRACTED: 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-8-4 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-67 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	6.24 7.1 33

^{**}Analyzed by GFAA

OF TENM	Woodward-Clyde Consultants	DATE COLLECTED:	05/12/93
	Carter Park - 93C0243A	DATE RECEIVED:	05/14/93
7 7/0 0 20 0 .	•	DATE EXTRACTED:	06/15/93
BATCH NO.:	93E057	DATE ANALYZED:	06/24/93
SAMPLE ID:	B-8-5		Soil
CONTROL NO.:	93E057-68	MATRIX:	
	NA	DILUTION FACTOR:	1
4 MOISIONE.			

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	5.45 6.16 40.7

**Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: 06/15/93 DATE EXTRACTED: BATCH NO.: DATE ANALYZED: 06/24/93 B-4-1 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-73 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic Lead	5 5	458 144
Zinc	5	432

DATE COLLECTED: Woodward-Clyde Consultants 05/12/93 CLIENT: DATE RECEIVED: 05/14/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: 06/24/93 DATE ANALYZED: B - 4 - 3SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-75 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	7.42
Zinc	5	57.1

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/14/93 PROJECT: DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 06/24/93 DATE ANALYZED: SAMPLE ID: B - 4 - 4Soil MATRIX: CONTROL NO.: 93E057-76 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	9.85
Zinc	5	44.6

DATE COLLECTED: 05/12/93 Woodward-Clyde Consultants CLIENT: 05/14/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: 06/15/93 DATE EXTRACTED: 93E057 BATCH NO.: 06/24/93 DATE ANALYZED: B - 4 - 5SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-77 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5 5 5	6.09 53

Woodward-Clyde Consultants DATE COLLECTED: 05/12/93 CLIENT: DATE RECEIVED: 05/14/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 B-4-6 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E057-78 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	6.37
Zinc	5	62.9

DATE COLLECTED: NA Woodward-Clyde Consultants CLIENT: DATE RECEIVED: NA Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/15/93 93E057 BATCH NO.: DATE ANALYZED: 06/24/93 METHOD BLANK 1 SAMPLE ID: Soil CONTROL NO.: 933050 E057-BLK1 MATRIX: DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
 Arsenic** Lead	5 5 5	ND ND ND
Zinc	3	

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: CLIENT: DATE RECEIVED: Carter Park - 93C0243A NA PROJECT:

DATE EXTRACTED: 06/15/93 BATCH NO.: 93E057 SAMPLE ID: METHOD BLANK 2 DATE ANALYZED: 06/29/93

CONTROL NO.: 933050 E057-BLK2 MATRIX:

DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	ND
Zinc	5	ND

**Analyzed by GFAA

CKY QUALITY CONTROL DATA LABORATORY CONTROL SAMPLE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO.:

93E057

LCS 216

DATE RECEIVED:

SAMPLE ID:

DATE EXTRACTED: 06/15/93

CONTROL NO.:

93E057-LCS1 and LCS2

DATE ANALYZED:

06/24/93

ACCESSION:

Parameter	TRUE VALUE (mg/kg)	LCS1 FOUND VALUE (mg/kg)	LCS2 FOUND VALUE (mg/kg)	RPD (%)	ACCEPTANCE RA (mg/kg)
Arsenic	67.7	75.3	75.9	1	41 - 105
Lead	100	86.0	90.4	5	55 - 140
Zinc	197	173	182	5	98 - 280

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

CT TENT:

Woodward-Clyde Consultants

JECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO.:

93E057

05/12/93 DATE RECEIVED:

SAMPLE ID:

B-5-1

DATE EXTRACTED: 06/15/93

CONTROL NO.:

93E057-16

DATE ANALYZED:

06/24/93

ACCESSION:

Parameter	SAMPLE RESULT (mg/kg)	DUP SAMPLE RESULT (mg/kg)	RPD RESULT (%)
Arsenic	388	257	41 +
Lead	496	211	81 +
Zinc ,	328	370	12

⁺ Outside control limit of 20%

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

EPA 3050/6010

METHOD: MATRIX:

Soil

BATCH NO.:

93E057

DATE RECEIVED:

05/12/93

SAMPLE ID:

B-5-1

DATE EXTRACTED:

06/15/93

CONTROL NO.:

93E057-16

DATE ANALYZED:

06/24/93

ACCESSION:

Parameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY. (%)
Arsenic	388	100	363	-25 +
Lead	496	100	396	-100 +
Zinc	328	100	491	163 +

⁺ Outside control limit of 75-125%

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

Woodward-Clyde Consultants

TECT:

Carter Park - 93C0243A

D:

EPA 3050/6010

ATRIX:

Soil

ATCH NO.:

AMPLE ID:

93E057 B-8-4

DATE RECEIVED: 05/12/93 DATE EXTRACTED: 06/15/93

CNTROL NO.:

93E057-67

DATE ANALYZED: 06/24/93

CCESSION:

93E057

	SAMPLE	DUP SAMPLE	RPD
	RESULT	RESULT	RESULT
arameter	(mg/kg)	(mg/kg)	(%)
rsenic**	6.24	6.02	4
ead	7.1	8.25	15
inc '	33	44.4	29 +

Manalyzed by GFAA

Cutside control limit of 20%

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

LIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

1ETHOD:

EPA 3050/6010

ATRIX:

Soil

BATCH NO.:

93E057

DATE RECEIVED:

05/12/93

AMPLE ID:

B-8-4

DATE EXTRACTED:

06/15/93

CONTROL NO.:

93E057-67

DATE ANALYZED:

06/24/93

CCESSION:

	SAMPLE RESULT	SPIKE CONC.	SPIKE RESULT	SPIKE RECRY.
'arameter	(mg/kg)	(mg/kg)	(mg/kg)	(%)
.rsenic**	6.24	100	93.4	87
.ead	7.1	100	91.9	85
inc	33	100	125	92

^{*}Analyzed by GFAA

Ce MiGore Anita a Sekie L

C K Y incorporated Analytical Laboratories

Date: 06/29/93

93E048

Woodward-Clyde Consultants 500-12th Street, Suite 100 Oakland, CA 94607

Attn: Mr. Michael McGuire

Subject: Additional Laboratory Report

Project: Carter Park #93C0243A

Enclosed is the laboratory report for samples received on 05/12/93. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. Additional analyses were requested on 06/10/93. The data reported includes:

Method

No. of Analysis

EPA 3050/6010 by ICP (Pb & Zn) EPA 3050/6010 by GFAA (As) 13 Soils 6 Soils

The results are summarized on seventeen pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Kam Y. Pang, Ph.D.

Laboratory Director

P.S. - All analyses requested for the above referenced project have been completed. Therefore, unless instructed, the remaining portions of the samples will be disposed of after fifteen (15) days from the date of this report.

CASE NARRATIVE

CLIENT:

WOODWARD-CLYDE CONSULTANTS

PROJECT:

CARTER PARK

CKY BATCH:

93E048

Additional metal analyses for samples received on 05/12/93 were requested on 06/10/93. The analyses were in accordance SW 846, USEPA 3rd Edition, 1986. Results were reported on wet weight basis.

- 1. Samples were homogenized before preparation for metal analyses according to instruction in the memo dated 06/10/93.
- 2. Metal analyses by Method 3050/6010/7000

Arsenic was analyzed by GFAA. Lead and Zinc were analyzed by ICP. Method blanks, lab control samples and calibrations were all within the control limits. Matrix spike recovery of Lead was negative due to the high lead concentration in the sample. No corrective action was taken.

In duplicate sample analyses, Arsenic and Lead were out of the project specific QC limit of 20%. The sample was re-analyzed and similar results were obtained. Since the method blank, lab control sample and lab control sample duplicates were all within control, no corrective action was taken.

05/10/93 DATE COLLECTED: Woodward-Clyde Consultants CLIENT: 05/12/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: 06/14/93 DATE EXTRACTED: 93E048 BATCH NO.: 06/24/93 DATE ANALYZED: B-15-2 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-02 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5	8.4 1520 91.9

^{**}Analyzed by GFAA

05/10/93 Woodward-Clyde Consultants DATE COLLECTED: CLIENT: 05/12/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: DATE EXTRACTED: 06/14/93 93E048 BATCH NO.: 06/24/93 DATE ANALYZED: B-15-3 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-03 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5	ND 8.1 44

**Analyzed by GFAA

05/10/93 Woodward-Clyde Consultants DATE COLLECTED: CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/12/93 PROJECT: DATE EXTRACTED: 06/14/93 BATCH NO.: 93E048 06/24/93 B-16-1 DATE ANALYZED: SAMPLE ID: CONTROL NO.: 93E048-10 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	138
Zinc	5	65.4

Woodward-Clyde Consultants DATE COLLECTED: 05/10/93 CLIENT: DATE RECEIVED: 05/12/93 Carter Park - 93C0243A PROJECT: 06/14/93 DATE EXTRACTED: 93E048 BATCH NO .: 06/24/93 DATE ANALYZED: B-19-1 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-19 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5 5	ND 11.6
Lead Zinc	5	64.4

**Analyzed by GFAA

05/10/93 Woodward-Clyde Consultants DATE COLLECTED: CLIENT: 05/12/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: 06/14/93 DATE EXTRACTED: 93E048 BATCH NO.: 06/24/93 DATE ANALYZED: B-19-4 SAMPLE ID: Soil -MATRIX: CONTROL NO.: 93E048-22 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	7.48
Zinc	5	61.5

05/10/93 DATE COLLECTED: Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/12/93 PROJECT: DATE EXTRACTED: 06/14/93 BATCH NO.: 93E048 06/24/93 DATE ANALYZED: SAMPLE ID: B-19-6 Soil MATRIX: CONTROL NO.: 93E048-24 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	8.22
Zinc	5	44.3

DATE COLLECTED: 05/10/93 Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A 05/12/93 DATE RECEIVED: PROJECT: 06/14/93 DATE EXTRACTED: 93E048 BATCH NO.: DATE ANALYZED: 06/24/93 B-14-1 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-51 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	13.3
Zinc	5	60.3

05/10/93 Woodward-Clyde Consultants DATE COLLECTED: CLIENT: 05/12/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: 06/14/93 DATE EXTRACTED: BATCH NO.: 93E048 SAMPLE ID: B-14-3DATE ANALYZED: 06/24/93 MATRIX: Soil CONTROL NO.: 93E048-53 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	6700
Zinc	5	132

		:======================================	
CLIENT:	Woodward-Clyde Consultants	DATE COLLECTED:	05/10/93
PROJECT:	Carter Park - 93C0243A	DATE RECEIVED:	05/12/93
BATCH NO.:	93E048	DATE EXTRACTED:	06/14/93
SAMPLE ID:	B-14-4	DATE ANALYZED:	06/24/93
CONTROL NO.:	93E048-54	MATRIX:	Soil
	NA	DILUTION FACTOR:	1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	6.26
Zinc	5	49.6

05/10/93 CLIENT: Woodward-Clyde Consultants DATE COLLECTED: Carter Park - 93C0243A DATE RECEIVED: 05/12/93 PROJECT: DATE EXTRACTED: 06/14/93 BATCH NO.: 93E048 06/24/93 B-14-5 DATE ANALYZED: SAMPLE ID: CONTROL NO.: 93E048-55 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Lead	5	7.6
Zinc	5	51.7

CLIENT:	Woodward-Clyde Consultants	DATE COLLECTED:	05/10/93
PROJECT:	Carter Park - 93C0243A	DATE RECEIVED:	05/12/93
BATCH NO.:	93E048	DATE EXTRACTED:	06/14/93
SAMPLE ID:	B-13-2	DATE ANALYZED:	06/24/93
CONTROL NO.:	93E048-61	MATRIX:	Soil
	NA	DILUTION FACTOR:	1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	6.05
Zinc	5	39.8

^{**}Analyzed by GFAA

DATE COLLECTED: 05/10/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 05/12/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/14/93 93E048 BATCH NO.: DATE ANALYZED: 06/24/93 B-13-3 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-62 DILUTION FACTOR: 1 % MOISTURE: NA

	Det Limit	KESULI
Element	(mg/kg)	(mg/kg)
Arsenic**	5	ND
Lead	· 5	ND
Zinc	5	42.6

^{**}Analyzed by GFAA

=======================================		=======================================	=======
CLIENT:	Woodward-Clyde Consultants	DATE COLLECTED:	05/10/93
PROJECT:	Carter Park - 93C0243A	DATE RECEIVED:	05/12/93
BATCH NO.:	93E048	DATE EXTRACTED:	06/14/93
SAMPLE ID:	B-13-4	DATE ANALYZED:	06/24/93
CONTROL NO.:	93E048-63	MATRIX:	Soil
<pre>% MOISTURE:</pre>	NA	DILUTION FACTOR:	1
	•		

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	6.22
Zinc	5	55.9

^{**}Analyzed by GFAA

===========		=======================================	=======
CLIENT:	Woodward-Clyde Consultants	DATE COLLECTED:	NA
PROJECT:	Carter Park - 93C0243A	DATE RECEIVED:	NA
BATCH NO.:	93E048	DATE EXTRACTED:	06/14/93
SAMPLE ID:	METHOD BLANK	DATE ANALYZED:	06/24/93
CONTROL NO.:	93E048-BLK	MATRIX:	Soil
	NA	DILUTION FACTOR:	1
			

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	ND
Zinc	5	ND

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROTECT:

Carter Park - 93C0243A

EPA 3050/6010

D:

CIRIX:

BATCH NO.:

93E064

DATE RECEIVED:

05/12/93

SAMPLE ID:

B-15-2

DATE EXTRACTED:

06/14/93

CONTROL NO.:

93E048-02

DATE ANALYZED:

06/24/93

ACCESSION:

93E048 93E064

'arameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY. (%)
rsenic**	8.4	100	85.6	77
lead	1520	100	1330	- 190 +
inc	91.9	. 100	191	99

^{**}Analyzed by GFAA

⁻ Outside control limit of 75-125%

CKY QUALITY CONTROL DATA LABORATORY CONTROL SAMPLE ANALYSIS

LIENT:

Woodward-Clyde Consultants

ROJECT:

Carter Park - 93C0243A

EPA 3050/6010

ETHOD: ATRIX:

Soil

ATCH NO.:

93E064

DATE RECEIVED:

NA

AMPLE ID:

LCS 216

DATE EXTRACTED:

06/14/93

ONTROL NO.:

93E064-LCS1 and LCS2

DATE ANALYZED:

06/24/93

CCESSION:

93E048 93E064

arameter	TRUE VALUE (mg/kg)	LCS1 FOUND VALUE (mg/kg)	LCS2 FOUND VALUE (mg/kg)	RPD (%)	ACCEPTANCE RANGE (mg/kg)
rsenic	67.7	75.4	67.3	11	41 - 105
ead	100	91.1	81.5	11	55 - 140
inc	197	180	167	8	98 - 280

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

LIENT:

Woodward-Clyde Consultants

ROJECT:

Carter Park - 93C0243A

ETHOD:

EPA 3050/6010

ATRIX:

Soil

ATCH NO.: AMPLE ID:

93E048

B-15-2

DATE RECEIVED:

05/12/93 06/14/93

ONTROL NO.:

93E048-02

DATE EXTRACTED: DATE ANALYZED:

06/24/93

CCESSION:

93E048 93E064

·	SAMPLE RESULT	SPIKE CONC.	SPIKE RESULT	SPIKE RECRY.
arameter	(mg/kg)	(mg/kg)	(mg/kg)	(%)
rsenic**	8.4	100	85.6	77
ead	1520	100	1330	−190 ÷
inc	91.9	100	191	99

^{*}Analyzed by GFAA

Outside control limit of 75-125%

CKY QUALITY CONTROL DATA LABORATORY CONTROL SAMPLE ANALYSIS

F TECT:

Woodward-Clyde Consultants

Carter Park - 93C0243A

D:

EPA 3050/6010

MIRIX:

Soil

MITCH NO.: MAMPLE ID: 93E048

DATE RECEIVED:

NA

ENTROL NO .:

LCS 216 93E048-LCS1 and LCS2

DATE EXTRACTED: DATE ANALYZED:

06/14/93 06/24/93

CCESSION:

93E048 93E064

arameter	TRUE VALUE (mg/kg)	LCS1 FOUND VALUE (mg/kg)	LCS2 FOUND VALUE (mg/kg)	RPD (%)	ACCEPTANCE RANGE (mg/kg)
rsenic	67.7	75.4	67.3	11	41 - 105
Lead	100	91.1	81.5	11	55 - 140
Linc	197	180	167	8	98 - 280

ANALYSIS REQUEST FORM

G3 Due 6-17-93

CLIENT NAME: CKY CONTROL NO.: REQUESTED BY: DATE: LOGGED BY: CKY CONTROL NO. CLIENT SAMPLE ID COMMENTS 93EC48 - 2. V 3-15-2 E048-3 1 EC48 - 10. EG48- 22 -EC48-24. EAUST-25 EC48-53 -E048-54-EC48-51 -3-14-5 EC48-55 -B-13-2 E0418-61_ B-13-3 E048-621 EC48-631

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

LIENT:
R' RCT:

Woodward-Clyde Consultants

Carter Park - 93C0243A

E. D:

EPA 3050/6010

ATRIX:

Soil

ATCH NO.: AMPLE ID: ONTROL NO.: 93E048 B-15-2 93E048-02 DATE RECEIVED: DATE EXTRACTED:

05/12/93 06/14/93

DATE ANALYZED:

06/24/93

CCESSION:

93E048 93E064

arameter	
rsenic**	
ead	
inc	

SAMPLE RESULT (mg/kg)
8.4 1520 91.9

DUP SAMPLE	
RESULT	
(mg/kg)	
ND	
1130	
110	

RESUL'	I _	
-		+
30		+
18		

RPD

outside control limit of 20%

^{*}Analyzed by GFAA

	OTNO		15) 893-3600		$\overline{}$	ن		-	ANAL'	YSE							· · · · · · · · · · · · · · · · · · ·	
3(CT NO.	43A) -	·]	<u> </u>	1				1				\dashv	913			
AMPL	ERS: (S	ígnáture)	: 6.				.,		1-2-1			j			ontain		REMARK (Sample	S
- Z-1	<u>tal</u>	Vuezon	11 63	Aatrix)ater,	2	Ŗ	9	Ŋ	de						Ŏ O		preservatio handling	
DATE	TIME	SAMP	LE NUMBEF	S (S)	EPA Method	EPA Method	EPA Method	EPA Method	Asy Pla , 2+	the talk					Number of Containers		procedures, e	etc.)
1/30	12:10	Crack		. \$	_				χ.	<u> </u>	-	-		\dashv	4	1	2. /	No
<u></u>	pill	Crack			├-				X	$\langle -$	+-	-		-	귀.	10		7
+	12.15	Crack	$\frac{C}{D}$		-	-			X	$\langle -$	+	\vdash		+	#	•	Rush	217
-	12.21	Crack			T				χ	X						-		
	17:32	(rac							X	X X					Щ	د ت	STAMPIN	1
	12:25	Crack	K G.						XXX	X					1	Ĺ	esults	
*	12:3<	Crac	K J							7		-				K	lichael	
		٠,			+-	\vdash	-	-	╂╌┼	_	+	╫	-				Mcguir	9
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		4													U	Hc Quir UCC - Da 510/1874	Klunc
		**														2	510/874-	-3262
			-		\perp	$oldsymbol{\perp}$					$\frac{1}{1}$	1				r	Ac h	
					1	_		\perp	-	_	+	+	_			7/1	45- Rug	
				·								1					GF-A	A
					_	1	\bot	igspace			\bot	<u> </u>	+			لد	/	
											1	+					Stand	ard,
	ļ ·				\bot	+	-	+	-		1	+	+	<u> </u>		_ ا	turn	
					+	+	+	+			+	+	+	-	-			1
<u></u>	+			- :	+	+	7	+	+-	•.	\top	\top				ا ا	arous OH	TICY
	<u></u>					\ \ 				••••			TO IMBER		9			
RELING (Signal	DUISHED		DATE/TIME	RECEIVED (Signature)		/			RELING (Signat		ED B	Y:/	· · ·	D/	ATE/TII	ME	RECEIVED BY (Signature)	(:/
-TH	21 /.U. S	VILONIX IIPMENT :	11/99 0	SHIPPED (Signature				-	COUR (Signa						CEIVE		OR LAB BY :	DATE/T

. 93 E 048 DUE 5 = =	.		<u> </u>	· 		•. •				ز_			
Woodward-Clyde Consultants 500 12th Street, Suite 100, Oakland, CA 94607-4041 (415) 893-3600							Chain of Custody Record						
PROJECT NO. CARTER PARK 9300243A						ANA	LYSE				Ι.		
SAMPLERS; (Signature)	(A) it					dis	道	TALS	04S		goolet		REMARKS
Bull faright	Her, (A			_	_	g	2	2 M	7040/9045 MOGENI2E		٥	5	(Sample preservation,
DATE TIME SAMPLE NUMBER	Sample Matrix (S)oil, (W)ater, (EPA Method	EPA Method	EPA Method	EPA Mothod	유	andreis	TITLE	pH YOYO/904S	***************************************	monte of Continue		handling procedures, etc.)
5/40 1646 B-18-2	S					X		\bigcirc	$\langle X \rangle$		1		All samples in
(1654 B-18-3	5					X		\downarrow			1		broom or 35 lines
(1659 B-18 - 4	S					X		+	\mathbb{R}				HOLD samples
) 1707 B-18-5 (1713 B-18-6	13					∼		+			- -	- '	sending analysis
1 173 B-18 - 7	15	Н				Ź	\dashv	1	1			7 /	All samples in broos or 55 lines HOLD samples pending analysis regulat
V 1730 B-18 - 8	13					X							
5/11/93 0902 B-17 - 1	5					X							(i, 7n-)
(1914 B-17-2	<u>_</u>					X		$\langle \rangle$	\propto		1		3 week TAT
) 10922 B-17-3	S					X	_	\downarrow				1 1>	
5 1929 8-17-4.	<u>S</u>					X	+	+	X				Contact Mike McGime
1 1942 B-17-5 5 1948 B-17-6	S				<u> </u>	X	\dashv	+	+				Mike McGime
7 0958 B-17 -7	3			\vdash	<u> </u>	X	\dashv	1	1			\vdash	(510) 874-3288
1 1045 B-20-1	15					X		1	.			7 '	(310) 51 (3200
/ 1057 B-20 - 2	IŠ					X		X	XX	j			
(1104 3-20 -3	S					X			$ \langle $				
/ 1112 B-20 -4	S			_		X			<u> </u>				
(1120 B-20-5	S			_		X	_	_{	<u> </u>				
/ 1(25 B-20 - 6	<u>S</u>			<u> </u>	_	X	_		S —				
1132 B-20 - 7	<u> Ş</u>	-		<u> </u>	_	\String	-	$-\!\!\!\!/$	\ -		-		
1 1143 6-00-8				_	_	\$	\dashv	+	+		-		
) 1302 B-14-2	18				<u> </u>	\Diamond	+	X	\sqrt{k}				
) 1331 8-14-3	S					X	\top	X	X			\dashv	
(1347 B-14 - 4	S					X		\uparrow	d				
1 1401 B-14-5	Š					X						7	
V 1406 8-14-6	S					X			4			7	=600
										TOTA BER C	F 11	8	
(Signature)	EIVED 8	1	_			ELINC		ED B	7 :		DATE	TIME	RECEIVED BY : (Signature)
METHOD OF SHIPMENT: SH	IPPED BY	<u>-</u>				OURI					RECFI	VEDE	FOR LAB BY : DATE/TIME
	gnature		,		(3	Signati	nt6)				(Signa	ture)	V-12-
TUY JAYYANAYY TISANA	ABOH		RI	ES. 	630	Mapl	e Ave.	., Tor	rance,	Calif	90562	7Fel. (310) 618-8889 F +> (5:14 15:15)

500 12th Street, Suite 100 (415) 8	i company	Chain of Custody Record						
PROJECT NO.		<u>-4014</u>	ANALYS	ES				
SAMPLERS: (Signature) DATE TIME SAMPLE N	. Matrix Wysior, (A)ir	EPA Mothod EPA Mothod EPA Mothod	Rywin	1904S 1904S 5N12E	Number of Containers	REMARKS (Sample preservation, handling procedures, etc.)		
5/10/12 0940 B-15-1		4 4 4	₽ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	# # # # # # # # # # # # # # # # # # #	Ž	A //		
1 MSD B-15-2	2 5					All samples in		
1010 3-15-	3 5		$\sqrt{\chi}$	X	1	brass or starless		
/ 1020 B-15-	4 5		X		1	Steel 21x6" or 21/2" x6" liners		
1035 B-15-	5 5		X	X	117	diz Xo lines		
1045B-15-	6 5		X	XI	1	HOLD Surples		
) /052 B - 15 -	7 5		X	X		pending analysis		
/ 110/B-15-	8 S		$-\frac{1}{X}$	+X+		pending analysis		
1238 B-16 -	9 5		$-\frac{1}{2}$	+				
7 -	2 5				+ + //	BURKTAT)		
(1250 B-16-	3 5							
1302 13 -16 -	4 5	111		XX	1 1	Contect		
1310 B-16-	5 5		X		1 /			
	6 5		ĮX	XI	117	Mike McGuire		
$-\frac{ 328 B-16-}{}$	-7 5		X	XI	1	(510) 874-3288		
1 2 2 2	8 5		X.	X	1			
1347 B -16 -	9 5		X		1			
1440 B - 19 -	<u>/</u> S		<u> </u>	X	1			
1) 1745D B-19-	2 5		X		1			
(154 15-19-	3 5		$\frac{1}{2}$		1			
1519 8-19-	7 S 5 S		\rightarrow		4/			
1555 B-19-1								
1533 8-19-3	7 S			\bigcirc				
5 1543 B-19-5	2 5	+++	12		1-1-			
1554 B -19 - 9	3			 				
V 1635 B-18-1	' S		X			T=6°C		
		1		TO' NUMBER CONTAINE	TAL LOF 28	,		
RELINOUISHED BY: DATE/TIS	ME REVEIVED BY:		RELINOUISHED (Signature)	<u> </u>	DATE/TIME	RECEIVED BY : (Signature)		
METUOD OF SHIPMENT:	100							
PED EXPIRES	SHIPPED BY:	区	COURIER: (Signature)		RECEIVED (Signature)	FOR LAB BY: DATE:TIME		
6218918463/67891839	12	<u> </u>			1	1 1 1 9 1		

C K Y incorporated Analytical Laboratories

Date: 06/03/93 93E064

Woodward Clyde Consultants 500 12th Street, Suite 100 Oakland, CA 94607-4014

Attn: Mr. Michael McGuire

Subject: Laboratory Report

Project: Carter Park

Enclosed is the laboratory report for samples received on 05/15/93. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. The data reported includes:

<u>Method</u>	No. of Analysis .
EPA 608/8080 EPA 8140 EPA 8150	1 Water/4 Soils 1 Water/4 Soils 1 Water/4 Soils 4 Soils
EPA 3050/6010/7000	
EPA 9045	21 Soils

The results are summarized on thirty-six pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Kam Y. Pang, Ph.D./ Laboratory Director

P.S. - All analyses requested for the above referenced project have been completed. Therefore, unless instructed, the remaining portions of the samples will be disposed after fifteen (15) days from the date of this report.

CLIENT:	Woodward Clyde Consultants	DATE REC'D:	05/15/93
PROJECT:	Carter Park	DATE EXTRACTED:	05/19/93
	VCPEOB	DATE ANALYZED:	05/24/93
CONTROL NO:	· &-	MATRIX TYPE:	Water
CONTROL NO:			=======

CONTROL NO. 93E004 25			
PARAMETERS (608)	RESULTS (ug/L)	DI	ETECTION LIMIT (ug/L)
Alpha-BHC gama-BHC (Lindane) Heptachlor Aldrin beta-BHC delta-BHC Heptachlor Epoxide Endosulfan I gamma-Chlordane alpha-Chlordane DDE Dieldrin Endrin DDD Endosulfan II DDT Endrin aldehyde Methoxychlor Endrin Ketone Toxaphene	ND N		0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1
% Surrogate Recovery		Aco	ceptable Range
Tetrachloro-m-xylene Decachlorobiphenyl		106 124	30-150 24-154

CASE NARRATIVE

CLIENT:

WOODWARD CLYDE CONSULTANTS

PROJECT:

CARTER PARK

CKY BATCH:

93E064

Twenty-four (24) soil and one (1) water samples were received on 05/15/93 for analyses by EPA methods 8080, 8140, 8150, 9045 and metals in accordance with SW 846, USEPA 3rd Edition, 1986. Results are reported on wet weight basis.

1. Samples were homogenized before preparation for various chemical analyses according to instruction in the memo dated 05/15/93.

2. EPA Method 8080 (Pesticides)

Holding time, system performance, method blank, lab control sample, and surrogate recoveries were all within Quality Control limit. Matrix spike and matrix spike duplicate analyses were within QC limit.

3. EPA Method 8140

Holding time, system performance, method blank, lab control sample, surrogate recoveries were all within Quality Control limit. Matrix spike of phorate had no recovery. However, recoveries of disulfoton and surrogate were within the recommended range and lab control sample was within control. No corrective action was taken. Matrix effect was suspected.

4. EPA Method 8150

Holding time, system performance, method blank, lab control sample, surrogate recoveries, matrix spike and matrix spike duplicate analyses were all within QC limit.

5. Metal analyses by Method 3050/6010/7000

Arsenic was analyzed by GFAA, Mercury was analyzed by cold vapor. All other elements were analyzed by ICP. Method blanks, lab control samples, blank spikes, and calibrations were all within control limit. Matrix spike recoveries of Antimony, Copper, Zinc and Selenium were out of the QC limit of 75-125%. Since the blank spike, lab control sample and post digestive spike results were within control, matrix effect or inhomogeneous samples were suspected. No corrective action was taken.

In duplicate sample analyses, Arsenic, Barium, Chromium and Vanadium were out of the project specific QC limit of 20%. The sample was re-analyzed and similar results were obtained. Since the method blank and lab control sample were within control and only four out of seventeen metals were affected, the cause of discrepancy may be due to something other than the analytical process.

6. EPA Method 9045

CLIENT: Woodward Clyde Consultants DATE REC'D: DATE EXTRACTED: 05/18/93 PROJECT: Carter Park DATE ANALYZED: 05/24/93 SAMPLE ID: B-7-1 Soil MATRIX TYPE: CONTROL NO: 93E064-1

		DETECTION LIMIT
	RESULTS	(ug/kg)
PARAMETERS (8080)	(ug/kg)	<u>(ud/kg/</u>
	ND	10
Alpha-BHC	ИD	10 20
gama-BHC (Lindane)	ND	20
Heptachlor Aldrin	ND	20
beta-BHC	ND	20
delta-BHC	ND ND	20
Heptachlor Epoxide	ND	20
Endosulfan I	ND	50.
gamma-Chlordane	ND	50
alpha-Chlordane	ND	20 20
DDE Dieldrin	ND	20
Endrin	ND	20
DDD	ND ND	50
Endosulfan II	ND	20
DDT	ND	50
Endrin aldehyde	ND	100
Methoxychlor	ND	50
Endosulfan Sulfate	ND	50
Endrin Ketone Toxaphene	ND	100

% surrogate Recovery	Acce	eptable Range
Tetrachloro-m-xylene	93	20-150
Decachlorobiphenyl	127	20-150

===========			========
CLIENT:	Woodward Clyde Consultants	DATE REC'D:	05/15/93
PROJECT:	Carter Park	DATE EXTRACTED:	
SAMPLE ID:	Method Blank		05/24/93
CONTROL NO:	93E064	MATRIX TYPE:	Water

CONTROL NO: 93E064	MATR	IX TYPE:	Water
PARAMETERS (608)	RESULTS (ug/L)	DETI	ection Limit
Alpha-BHC gama-BHC (Lindane) Heptachlor Aldrin beta-BHC delta-BHC Heptachlor Epoxide Endosulfan I gamma-Chlordane alpha-Chlordane DDE Dieldrin Endrin DDD Endosulfan II DDT Endrin aldehyde Methoxychlor Endosulfan Sulfate Endrin Ketone Toxaphene	ND N		0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1
% Surrogate Recovery		Acce	ptable Range
Tetrachloro-m-xylene Decachlorobiphenyl		89 142	30-150 24-154

Woodward Clyde Consultants DATE REC'D: 05/15/93 DATE EXTRACTED: 05/18/93 CLIENT: Carter Park DATE ANALYZED: 05/24/93 PROJECT: SAMPLE ID: B-3-1 Soil MATRIX TYPE: CONTROL NO: 93E064-17

	<u> </u>	
PARAMETERS (8080)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Alpha-BHC gama-BHC (Lindane) Heptachlor Aldrin beta-BHC delta-BHC Heptachlor Epoxide Endosulfan I gamma-Chlordane alpha-Chlordane DDE Dieldrin Endrin DDD Endosulfan II DDT Endrin aldehyde Methoxychlor Endosulfan Sulfate Endrin Ketone Toxaphene	ND N	10 10 20 20 20 20 20 20 50 20 20 20 20 50 50 50 50
% Surrogate Recove	ery	Acceptable Range

%	Surrogate Recovery	Acce	ptable kany
	Tetrachloro-m-xylene	103	20-150
	Decachlorobiphenyl	140	20-150

DATE REC'D: 05/15/93 Woodward Clyde Consultants CLIENT: DATE EXTRACTED: 05/18/93 PROJECT: Carter Park DATE ANALYZED: 05/24/93 SAMPLE ID: B-6-1 Soil MATRIX TYPE: CONTROL NO: 93E064-10

PARAMETERS (8080)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Alpha-BHC gama-BHC (Lindane) Heptachlor Aldrin beta-BHC delta-BHC Heptachlor Epoxide Endosulfan I gamma-Chlordane alpha-Chlordane DDE Dieldrin Endrin DDD Endosulfan II DDT Endrin aldehyde Methoxychlor Endosulfan Sulfate Endrin Ketone Toxaphene	ND N	10 10 20 20 20 20 20 20 50 20 20 20 20 50 50 50

% Surrogate Recovery	ACC	sprante kan
Tetrachloro-m-xylene	92	20-150
Decachlorobiphenyl	126	20-150

CLIENT: Woodward Clyde Consultants
PROJECT: Carter Park
SAMPLE ID: Method Blank
CONTROL NO: 93E064

DATE REC'D: 05/15/93
DATE EXTRACTED: 05/18/93
DATE ANALYZED: 05/24/93
MATRIX TYPE: Soil

PARAMETERS (8080)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Alpha-BHC gama-BHC (Lindane) Heptachlor Aldrin beta-BHC delta-BHC Heptachlor Epoxide Endosulfan I gamma-Chlordane alpha-Chlordane DDE Dieldrin Endrin DDD Endosulfan II DDT Endrin aldehyde Methoxychlor Endosulfan Sulfate Endrin Ketone Toxaphene	ND N	10 10 20 20 20 20 20 20 50 20 20 20 20 50 50 50

% Surrogate Recovery	Acc	eptable Rang
Tetrachloro-m-xylene	90	20 - 150
Decachlorobiphenyl	127	20 - 150

CLIENT: Woodward Clyde Consultants DATE REC'D: 05/15/93
PROJECT: Carter Park DATE EXTRACTED: 05/18/93
SAMPLE ID: B-3-2 DATE ANALYZED: 05/24/93
CONTROL NO: 93E064-18 MATRIX TYPE: Soil

PARAMETERS (8080)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Alpha-BHC gama-BHC (Lindane) Heptachlor Aldrin beta-BHC delta-BHC Heptachlor Epoxide Endosulfan I gamma-Chlordane alpha-Chlordane DDE Dieldrin Endrin DDD Endosulfan II DDT Endrin aldehyde Methoxychlor Endosulfan Sulfate Endrin Ketone Toxaphene	ND N	10 10 20 20 20 20 20 20 20 20 20 20 20 50 50 50

% Surrogate Recovery	Acce	Acceptable Range	
Tetrachloro-m-xylene	88	20-150	
Decachlorobiphenyl	130	20-150	

CLIENT: Woodward Clyde Consultants DATE REC'D: 05/15/93
PROJECT: Carter Park DATE EXTRACTED: 05/20/93
SAMPLE ID: Method Blank DATE ANALYZED: 05/26/93
CONTROL NO: 93E064-Blk MATRIX: Water

	·	
•	RESULTS	DETECTION LIMIT
PARAMETERS (8140)	(ug/L)	(ug/L)
Dichlorovos	ND	50
Phosdrin	ND	50
Ethoprop	ИD	50
Naled	ND	. 100
Phorate	ND	50
Demeton	ND	100
Diazinon	ND	50
Disulfoton	ND	• 50
Methyl parathion	ND	50
Ronnel	ND	50
Chlorpyriphos	ND	50
Fenthion	ND	50
Merphos	ND	50
Stirophos	ND	100
Tokuthion	ND	100
Fensulfothion	ND	100
Suprofos	ND `	50
Azinphos Methyl	ND	500
Coumaphos	ND	100
Codmaphos		
% Surrogate Rec.		Accept. Range
Triphenol Phosphate	82	(20-140)

CLIENT: Woodward Clyde Consultants DATE REC'D: 05/15/93
PROJECT: Carter Park DATE EXTRACTED: 05/20/93
SAMPLE ID: VCPEQB DATE ANALYZED: 05/26/93
CONTROL NO: 93E064-25 MATRIX: Water

		*
	RESULTS	DETECTION LIMIT
PARAMETERS (8140)	(ug/L)	(ug/L)
Dichlorovos	ND	50
Phosdrin	ND	50
Ethoprop	ND	50
Naled	ND	100
Phorate	ND	50
Demeton	ND	100
Diazinon	ND	50
Disulfoton	ND	→ 50
Methyl parathion	ND	50
Ronnel	ND	50
Chlorpyriphos	ND	50
Fenthion	ND	50
Merphos	ND	50
Stirophos	ND	100
Tokuthion	ND	100
Fensulfothion	ND	100
Suprofos	ND	50
Azinphos Methyl	ND	500
Coumaphos	ND	100
% Surrogate Rec.		Accept. Range
Triphenol Phosphate	108	(20-140)

CLIENT: Woodward Clyde Consultants
PROJECT: Carter Park
SAMPLE ID: B-6-1
CONTROL NO: 93E064-10

DATE REC'D: 05/15/93
DATE EXTRACTED: 05/18/93
DATE ANALYZED: 05/26/93
MATRIX: Soil

PARAMETERS (8140)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
n' di amarag	ND	50
Dichlorovos	ир	50
Phosdrin	ND	50
Ethoprop	ND	100
Naled	ND	50
Phorate	ND	100
Demeton	ND	50
Diazinon	ND	4 50
Disulfoton	ND	50
Methyl parathion	ND	50
Ronnel	ND	50
Chlorpyriphos	ND	50
Fenthion	ND	50
Merphos	ND	100
Stirophos	ND	100
Tokuthion	ND	100
Fensulfothion	ND	50 -
Suprofos	ND	500
Azinphos Methyl	ND	100
Coumaphos	ND	200
% Surrogate Rec.		Accept. Range
Triphenol Phosphate	.77 	(20-140)

Woodward Clyde Consultants DATE REC'D: 05/15/93 CLIENT: DATE EXTRACTED: 05/18/93 Carter Park PROJECT: DATE ANALYZED: 05/26/93 SAMPLE ID: B-7-1 MATRIX: CONTROL NO: 93E064-1

PARAMETERS (8140)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Dichlorovos	ND	50
Phosdrin	ND	50
- -	ND	50
Ethoprop	ND	100
Naled	ND	50
Phorate	ND	100
Demeton	ND	50
Diazinon	ND	• 50
Disulfoton	ND	50
Methyl parathion	ND	50
Ronnel	ND	50
Chlorpyriphos	ND	50
Fenthion	ND	50
Merphos	ND	100
Stirophos	ND	100
Tokuthion	ND	100
Fensulfothion	ND	50
Suprofos	ND	500
Azinphos Methyl	ND	100
Coumaphos	N.D	
% Surrogate Rec.	•	Accept. Range
Triphenol Phosphate	79 [°] 	(20-140)

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROTECT:

Carter Park - 93C0243A

C)D:

EPA 3050/6010

TATRIX:

0.41

Soil

BATCH NO.: BAMPLE ID: CONTROL NO.: 93E064 B-15-2

93E048-02

DATE RECEIVED: DATE EXTRACTED:

05/12/93 06/14/93

DATE ANALYZED:

ED: 06/24/93

ACCESSION:

93E048 93E064

'arameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY. (%)
rsenic**	8.4	100	85.6	77
Jead	1520	100	1330	-190 +
inc	91.9	100	191	99

^{:*}Analyzed by GFAA

⁻ Outside control limit of 75-125%

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

LIENT:

Woodward-Clyde Consultants

ROJECT:

Carter Park - 93C0243A

ETHOD:

EPA 3050/6010

Soil

ATCH NO.:

93E064

AMPLE ID: ONTROL NO.: B-15-2 93E048-02 DATE RECEIVED: DATE EXTRACTED:

05/12/93

06/14/93

DATE ANALYZED:

06/24/93

CCESSION:

93E048 93E064

	SAMPLE
	RESULT
arameter	(mg/kg)
rsenic**	8.4
ead	1520
inc	91.9

DUP SAMPLE	RPD
RESULT	RESULT
(mg/kg)	(%)
ND	+
1130	3.0 +
110	18

*Analyzed by GFAA

Outside control limit of 20%

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: NA PROJECT: Carter Park - 93C0243A DATE RECEIVED: NA

BATCH NO.: 93E064 DATE EXTRACTED: 06/14/93 SAMPLE ID: METHOD BLANK DATE ANALYZED: 06/24/93

CONTROL NO.: 93E064-BLK MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead	5 5	ND ND
Zinc	5	ND

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA LABORATORY CONTROL SAMPLE ANALYSIS

LIENT:

Woodward-Clyde Consultants

ROJECT:

Carter Park - 93C0243A

ETHOD:

EPA 3050/6010

ATRIX:

Soil

ATCH NO.:

93E064

DATE RECEIVED:

NA

AMPLE ID:

LCS 216

DATE EXTRACTED:

06/14/93

ONTROL NO.:

93E064-LCS1 and LCS2

DATE ANALYZED:

06/24/93

CCESSION:

93E048 93E064

arameter	TRUE VALUE (mg/kg)	LCS1 FOUND VALUE (mg/kg)	LCS2 FOUND VALUE (mg/kg)	RPD (%)	ACCEPTANCE RANGE (mg/kg)
rsenic	67.7	75.4	67.3	11	41 - 105
ead	100	91.1	81.5	11	55 - 140
inc	197	180	167	8	98 - 280

PROJECT: Carter Park - 93C0243A DATE RECEIVED: (BATCH NO.: 93E064 DATE EXTRACTED: (SAMPLE ID: B-3-5 DATE ANALYZED: (05/14/93 05/15/93 06/14/93 06/24/93 Soil
% MOISTURE: NA DILUTION FACTOR:	1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead	5 5	ND 6.86 54.5
Zinc	. 5	54.5

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/14/93 CLIENT: DATE RECEIVED: 05/15/93 Carter Park - 93C0243A PROJECT: 06/14/93 DATE EXTRACTED: BATCH NO.: 93E064 06/24/93 DATE ANALYZED: B-3-6 SAMPLE ID: Soil CONTROL NO.: 93E064-22 MATRIX: DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	9.73
Zinc	5	59.9

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/14/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/15/93 PROJECT: 06/14/93 DATE EXTRACTED: BATCH NO.: 93E064 DATE ANALYZED: 06/24/93 B-3-3 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E064-19 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	6.97
Zinc	5	52.3

^{**}Analyzed by GFAA

05/14/93 DATE COLLECTED: Woodward-Clyde Consultants CLIENT: 05/15/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: 06/14/93 DATE EXTRACTED: 93E064 BATCH NO.: 06/24/93 DATE ANALYZED: B - 3 - 4SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E064-20 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5	ND 9.49 51.2

**Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/14/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/15/93 PROJECT: DATE EXTRACTED: 06/14/93 93E064 BATCH NO.: DATE ANALYZED: 06/24/93 B-7-GRB SAMPLE ID: Soil CONTROL NO.: 93E064-08 MATRIX: DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	5.52
Zinc	5	27.6

^{**}Analyzed by GFAA

DATE COLLECTED: 05/14/93 Woodward-Clyde Consultants CLIENT: 05/15/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: 06/14/93 DATE EXTRACTED: BATCH NO.: 93E064 06/24/93 DATE ANALYZED: B-6-GRB SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E064-09 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5 5	ND ND
Lead Zinc	5 5	26.7

**Analyzed by GFAA

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: 05/14/93 Carter Park - 93C0243A PROJECT: DATE RECEIVED: 05/15/93 BATCH NO.: 93E064 DATE EXTRACTED: 06/14/93 SAMPLE ID: B - 7 - 4DATE ANALYZED: 06/24/93 CONTROL NO.: 93E064-04 MATRIX: % MOISTURE: DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	. 5	, ND
Lead	5	7.92
Zinc .	5	63.6

**Analyzed by GFAA

DATE COLLECTED: 05/14/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 05/15/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/14/93 93E064 BATCH NO.: 06/24/93 DATE ANALYZED: B-7-5 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E064-05 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	6.67
Zinc	5	50.4

^{**}Analyzed by GFAA

DATE COLLECTED: 05/14/93 Woodward-Clyde Consultants CLIENT: 05/15/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/14/93 93E064 BATCH NO.: 06/24/93 DATE ANALYZED: B-7-2 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E064-02 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	5.39
Zinc	. 5	62

**Analyzed by GFAA

DATE COLLECTED: Woodward-Clyde Consultants 05/14/93 CLIENT: 05/15/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: 06/14/93 DATE EXTRACTED: 93E064 BATCH NO.: 06/24/93 DATE ANALYZED: SAMPLE ID: B-7-3 Soil MATRIX: CONTROL NO.: 93E064-03 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
	5	ND
Arsenic**	5	ND
Lead	_	72.9
Zinc	5	12.5

**Analyzed by GFAA

CC: Historie Anita Q Suelce L

C K Y incorporated Analytical Laboratories

Woodward Clyde Consultants 500 12th Street, Suite 100 Oakland, CA 94607-4014

Attn: Mr. Michael McGuire

Subject: Additional Laboratory Report

Project: Carter Park #93C0243A

Enclosed is the laboratory report for samples received on 05/15/93. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. Additional analyses were requested on 06/10/93. The data reported includes:

Method

No. of Analysis

EPA 3050/6010 by ICP (Pb & Zn) EPA 3050/6010 by GFAA (As)

10 Soils

The results are summarized on fourteen pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Kam Y. Pang, Ph.D.

Laboratory Director

P.S. - All analyses requested for the above referenced project have been completed. Therefore, unless instructed, the remaining portions of the samples will be disposed after fifteen (15) days from the date of this report.

CASE NARRATIVE

CLIENT:

WOODWARD-CLYDE CONSULTANTS

PROJECT:

CARTER PARK

CKY BATCH:

93E064

Additional metal analyses for samples received on 05/15/93 were requested on 06/10/93. The analyses were in accordance with SW 846, USEPA 3rd Edition, 1986. Results were reported on wet weight basis.

- 1. Samples were homogenized before preparation for metal analyses according to instruction in the memo dated 06/10/93.
- 2. Metal analyses by Method 3050/6010/7000

Arsenic was analyzed by GFAA. Lead and Zinc were analyzed by ICP. Method blanks, lab control samples and calibrations were all within the control limits. Matrix spike recovery of Lead was negative due to the high lead concentration in the sample. No corrective action was taken.

In duplicate sample analyses, Arsenic and Lead were out of the project specific QC limit of 20%. The sample was re-analyzed and similar results were obtained. Since the method blank, lab control sample and lab control sample duplicates were all within control, no corrective action was taken.

37

32

48

50 51 J 2 J3

Woodward-Clyde Consultants Chain of Custody Record 500 12th Street, Suite 100, Oakland, CA 94607-4041 (415) 893-3600 PROJECT NO. CHRTER PARK **ANALYSES** 930024 Number of Containers SAMPLERS; (Signature REMARKS Sample Matrix (S)oil, (W)aler, (A)ir (Sample preservation. handling procedures, etc.) DATE TIME SAMPLE NUMBER 29 5/43 1646 B-18 -All samples in brooms or 55 lines 1654 B-18 HOLD samples 1707 5 5/1/93 0902 3 week TAT 3 <u>5</u> Contact Mike McGime <u>S</u> (510) 874-3288 S S B-70 3-20 S B-20 T=60c TOTAL NUMBER OF CONTAINERS RELINQUISHED BY: DATE/TIME RECEIVED BY RELINQUISHED BY: DATE/TIME RECEIVED BY: (Signature) (Signature) (Signature) METHOD OF SHIPMENT: SHIPPED BY COURIER: RECEIVED FOR LAB BY : DATE/TIME FED Express AIRBILLE (Signaturer Company) 6208/6208/18502 (C): X

(Signature)

(Signature)

Uõ

T-12-

-93

1220

•	Woodward-Clyde Consultants 500 12th Street, Suite 100, Oakland, CA 94607 (415) 893-3600 -4014							Chain of Custody Record						
PROJ	ECT NO.	Conter Pa 0743A				- 40	14	AN.	ALYSI					
SAMP	LERS: (S	Signature)		- 				whire	Sass	22 METHLS	ENIZE		ontainers	REMARKS (Sample
DATE	TIME	SAMPLE	NUMBER	Sample Matrix (S)oil, (W)ator, (A)ir	EPA Method	EPA Method	EPA Method	HOLD OZW	malisis	TITLE 22 METALS	B) HOMOGENIZE	•••••••••••••••••••••••••••••••••••••••	Number of Containers	preservation, handling procedures, etc.)
5/1/3 - 2	1419	B-14 - B-14 -	7 8	5				X		X			1	All samples in brass or starts Steel 2"x6" o
1	1430 1515 1525	B-14- B-13- B-13	7 2	55				X			X		1	Steel 2"x6" o 21/2"x6" linar
2	1537_ 1548 1558	B-13 - B-13 - B-13 -	- 3 - 4	5 5				XXX		X			1	HOLD samples
5	1607	B-13-	5 - 6 - 7	S				XX					1	panding analysis request 3 week TAT
V	1618 1628	B-13- B-13-	- <u>8</u> - 9	Ś				X				•	1	
	·													Contact mike McGuire
														(510) 874-3289
					1						IUMBE		12	T=6°C
RELINOU (Signature	IISHED BY	DATE	/ Signa	IVED BY	: -			RELINC (Signati	UISHEI Ire)		MATM		TE/TIM	E RECEIVED BY : (Signature)
METHOD	OF SHIP	MENT: AFRBIULE 403/6318918	SHIP	PED BY	TO TO	-		COURIE		-	٠.		CEIVED	FOR LAB BY: DATE/TIME

QUALITY CONTROL DATA

CLIENT: Woodward-Clyde

PROJECT: Carter Park #93C0243A

CONTROL NO: 93E048

METHOD: EPA 9045 DATE ANALYZED: 05/14/93

MATRIX: Soil

SAMPLE ID: 93E048-12

SAMPLE DUP. SAMPLE RPD COMPOUND RESULTS RESULTS %

(pH/units) (pH/units)

pH 6.99 7.09 1

METHOD: EPA 9045

DATE ANALYZED: 05/14/93 MATRIX: Soil

SAMPLE ID: 93E048-29

SAMPLE DUP. SAMPLE RPD COMPOUND RESULTS RESULTS &

(pH/units) (pH/units)

pH 6.39 6.51 2

METHOD: EPA 9045
DATE ANALYZED: 05/14/93

MATRIX: Soil

SAMPLE ID: 93E048-60

SAMPLE DUP. SAMPLE RPD

COMPOUND RESULTS RESULTS &

(pH/units) (pH/units)

рн 7.66 7.78 2

		5E04		DUE						$\overline{}$											
- 1	50	00 (12 th S	treet, Suite	lyde C 100, Oakia 5) 893-3600	ind, CA	nsultants A 94607-					Chain of Custo					dy F	Recor	d			
-	PROJE	CT NO.	20117	'n							ANAI	YS	ES								_
-	SAMPI	<u> ろとし</u> EBS: (8	243	11		<u>.</u>					3	YM,	5711	545	12.E		of Containers		REMARI	<s< td=""><td></td></s<>	
Ĺ		Bell	ignaturey		=	trix ter, (A)ir				_	ğ	2	W.	06/0	SEN		Con		(Sample preservation	on,	
	DATE	TIME	SAMPL	E NUMBEI	R	Sample Matrix (S)oil, (W)ater,	EPA Method	EPA Method	EPA Method	EPA Method	Yot	Chalysi	Inte 22	1040b Hd	B HOMOGEN 12E		Number o		handling rocedures,	etc.)	
1	5/10/93	0140	B-15			S			_	_	X	_	\downarrow	4	_		4	All s	sample soor	s in	
2	(_	0150	B-15	<u>- 곡</u>		2			_		X	\dashv	-	\rightleftarrows			1	bra	10 or 21/x	starle!	rs
3	}-	1010	B-15	-3		S				-		\dashv	\checkmark	\langle	\downarrow		$\dot{\gamma}$	5+ee	21 2 × 2" × 6"	b ev	,
4		1020	B-15	- 4 - -	- -	9			\dashv		$\hat{\mathbf{x}}$	\dashv		À			计				
6	-)-	1075	B-15	6		5					X	. 1		X			1	110	LD Sing a	enplo.	5
7	\prec	1052	B-15	7		S					X			X			1	per	edng c	inalys	15
8	7	1101	B-15	- 8		S					X			\mathbb{X}			1	H	efues	7	
9)	IIID	B-15	-9		5					X	_		X			1		-		7
/°		1238	B-16	, - 1		S	<u> </u>				X	\rightarrow	\downarrow	$\stackrel{\textstyle \times}{\leftrightarrow}$	+		1	30	æKi	TAT	/
11	_/_	1254	B-16	-2		5	├-				X	_	\Leftrightarrow	\forall	$\stackrel{\sim}{\mapsto}$	-	1	•			
/2		1250	B-16	/		S	-	-	-			-	\exists	\forall	4	-	1	0 40	nted	-	
/3	-}-	1303	13-16	0-4		5	\vdash	-			Ý	\dashv		\leq		+	1	W.	ke M	. <u>Cuit</u>	
14	-{-	1310	B-16	5-S		3	\vdash	-	-	-	文		_	abla		 	1				
15		1378	B-1	6 - 7		is	╁	-			X			X			1	(210	987	1-52	00
/0 /7	-		3-16	-8		S	1				X			X			1				
18		1347	B-16	~		S					X						1				
19		1440	B - 19	7-1		S					X			X			1				
20)	145C	B-19	<i>– 2</i>		5					X		\boxtimes	\boxtimes	X		1				
2/	7	1524	B-19	- 3		15					ΙX						1				
22		1512	B-19	7 - 4		S	1_	┞	<u> </u>	_	X			X				-			
23		1219	B-19	1-5		S	╀-		-							+	1.	1			
24	 	11525	B-19	1-6		15	┼-	-	-	-	Θ			\Diamond		-	+	1			
25	-	11235	B -19			5	+-	-	┢	\vdash	Ŷ					-	1	1			1
26 21	\vdash	11295	B -19	7 - X 7 - 9		2	+-	\vdash	\vdash	\vdash	X							d ∙			
28	1	1635	1 -			10	+-	T		\vdash	X			X		Ī		To	6°C		- [
4		1162)	<u> 18 – 18</u>				л Л								T(NUMBE ONTAIN		28				
	RELINI (Signal	OUISHED (BY:	DATE/TIME 5/42 1845	∭(Sigh	ature)	A.]	1			RELING Signa		HED	BY:		D.	ATE/TI		ECEIVED Bignature)	Y:	1
	METH	OD OF SH	IPMENT :	<u>, ,) </u>	SHIP	PED B	٧: -		N		COUR							DFORL	AB BY :	DATE	IME
	F	ED	EXPIR	s S	FOR	alura ! { }	1	' T	/ <u>\</u>	1	(Signa	ture)	,			(S	ignatur Cecy			5.12- 93).12°.

QUALITY CONTROL DATA

Woodward-Clyde CLIENT: Carter Park #93C0243A PROJECT: 93E048 CONTROL NO: **EPA 9045** 05/17/93 DATE ANALYZED: Soil MATRIX: 93E048-10 SAMPLE ID: RPD DUP. SAMPLE SAMPLE <u>왕</u> RESULTS RESULTS COMPOUND (pH/units) (pH/units) 7.35 2 7.49 Hq **EPA 9045** METHOD: DATE ANALYZED: 05/17/93 MATRIX: Soil 93E048-22 SAMPLE ID: DUP. SAMPLE RPD SAMPLE RESULTS <u>ક્ર</u> RESULTS COMPOUND (pH/units) (pH/units) 4.08 4.10 Нq **EPA 9045** METHOD: DATE ANALYZED: 05/17/93 Soil MATRIX: 93E048-31

SAMPLE ID:

COMPOUND

Нq

DUP. SAMPLE

RESULTS

(pH/units)

6.97

SAMPLE

(pH/units)

7.03

RESULTS

RPD

<u>ક</u>

1

QUALITY CONTROL DATA

CLIENT:

Woodward-Clyde

PROJECT:

Carter Park #93C0243A

CONTROL NO:

93E048

METHOD:

EPA 9045

DATE ANALYZED: 05/17/93

MATRIX:

Soil

SAMPLE ID:

93E048-40

SAMPLE

DUP. SAMPLE

RPD

COMPOUND

RESULTS

RESULTS

(pH/units)

(pH/units)

<u>ક</u>

Нq

7.89

EPA 9045

DATE ANALYZED: 05/17/93

MATRIX:

Soil

SAMPLE ID:

93E048-51

SAMPLE

DUP. SAMPLE

RPD

COMPOUND

RESULTS

(pH/units)

RESULTS (pH/units) <u>ક્ષ્</u>

pН

7.22

7.11

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: 06/25/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: 06/28/93 DATE EXTRACTED: 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-25-5 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-05 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic Lead Zinc	 5 5 5	300 732 436

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A DATE RECEIVED: 06/25/93 PROJECT: DATE EXTRACTED: 06/28/93 BATCH NO.: 93F128 DATE ANALYZED: B-25-6 06/29/93 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93F128-06 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead	5 5	17.1 7.77
Zinc	5	49.2

^{**}Analyzed by GFAA

06/24/93 DATE COLLECTED: Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 06/25/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-25-2 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-02 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	. 5	7.5
Zinc	5	44.8

^{**}Analyzed by GFAA

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A 06/25/93 DATE RECEIVED: PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-25-3 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93F128-03 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	ND 5.88 47.1

**Analyzed by GFAA

EPA 9045 pН

Woodward Clyde Consultants DATE REC'D: 06/25/93 CLIENT: DATE EXTRACTED: 06/28/93 Carter Park/93C0243A-2000 PROJECT: 06/28/93 DATE ANALYZED: CONTROL NO: 93F128

Soil MATRIX:

SAMPLE ID	: CONTROL NO:	RESULTS (pH Unit)	DETECTION LIMIT (pH Unit)
B-25-1	93F128-1	5.91	0.1
B-25-2	93F128 - 2	6.85	0.1
B-25-3	93F128-3	7.20	0.1
B-25-5	93F128-5	4.48	0.1
B-25-6	93F128-6	7.24	0.1
B-25-7	93F128-7	7.70	0.1
B-24-1	93F128-8	4.08	0.1
B-24-2	93F128-9	5.27	$\rho.1$
B-24-3	93F128-10	7.02	0.1
B-24-4	93F128-11	7.12	0.1
B-24-5	93F128-12	7.28	0.1
B-23-1	93F128-13	6.26	0.1
B-23-2	93F128-14	7.74	0.1
B-23-3	93F128 - 15	7.17	0.1
B-23-4	93F128-16	7.32	0.1
B-22-1	93F128-17	6.93	0.1
B-22-2	93F128-18	7.94	0.1
B-22-3	93F128-19	7.86	0.1
B-22-4	93F128-20	3.63	0.1
B-21-2	93F128-23	7.29	0.1
B-21-3	93F128-24	7.44	0.1
B-21-4	93F128 - 25	7.12	0.1
B-21-6	93F128 - 27	7.49	0.1
B-26-1	93F128-28	6.59	0.1
B-26-2	93F128-29	7.30	0.1
B-26-3	93F128-30	7.73	. 0.1
B-26-4	93F128-31 ====================================	7.52	0.1

Woodward-Clyde Consultants DATE COLLECTED: 06/24/93 CLIENT: 06/25/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: DATE EXTRACTED: 06/28/93 BATCH NO.: 93F128 06/29/93 DATE ANALYZED: B-25-1 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-01 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	8.0
Zinc	5	65.5

^{**}Analyzed by GFAA

C K Y incorporated Analytical Laboratories

Date: 07/01/93

93F128

Woodward Clyde Consultants 500 12th Street, Suite 100 Oakland, CA 946075

Attn: Mr. Mike McGuire

data reported includes:

Subject: Laboratory Report

Project: Carter Park/93C0243A-2000

Enclosed is the laboratory report for samples received on 06/25/93. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. The

Method No. of Analysis

EPA 9045 EPA 3050/6010 (Metals) 27 Soils 27 Soils

The results are summarized on thirty-six pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Kam Y. Pang, Ph.D. Laboratory Director

P.S. - All analyses requested for the above referenced project have been completed. Therefore, unless instructed, the remaining portions of the samples will be disposed after fifteen (15) days from the date of this report.

CASE NARRATIVE

CLIENT:

WOODWARD-CLYDE CONSULTANTS

CARTER PARK PROJECT: CKY BATCH:

93F128

Twenty seven (27) soil samples were received on 06/25/93 for analyses by EPA methods 9045 and metals in accordance with SW846, USEPA 3rd Edition, 1986. Results are reported on wet weight basis.

Metal analyses by Method 3050/6010/7000 1.

> Arsenic was analyzed by GFAA with the exception of sample 93F128-05, which was analyzed by ICP. All other elements were analyzed by ICP. Method blank, lab control samples, RPD of lab control sample, and calibrations were all within control limit. Two sets of matrix spike were analyzed. Matrix spike recovery of Lead in sample 93F128-23 was out of the QC limit of 75-125%. Since lab control sample and post digestive spike results were within control, matrix effect or inhomogeneous sample were suspected. No corrective action was taken.

> Two sets of duplicates were analyzed. Arsenic and Lead in sample 93F128-01 and Arsenic in sample 93F128-23 were out of the project specific QC limit of 20%. The samples were re-analyzed and similar results were obtained. Since the method blank and RPD of lab control samples were within control, the cause of discrepancy may be due to something other than the analytical process.

EPA Method 9045 2.

Calibration and duplicates were all within control.

-	500 12	2th Street, Suite 100, (510) 893	. Oakland, CA 94607	7-4014		Chain of Custody Record						
PROJ	ECT NO.	·93co243A		1							1000.0	
IP		93(0243A Sixter P Signature)	mk	PEST	ा प्र	ANALY		到"门		٦ ۽	2	
Q.	3 2/	Jana Jana	<u>\$</u>	04/8	7/50	odu.	40/5	METHU		ontaine	REMARKS (Sample	
DATE	TIME	SAMPLE NUI	Sample Matrix (S)oil, (W)ator,	EPA Mothod 8080 (PEST) EPA Mothod 8/40	8 8	analysis r		22 26 27		Number of Containers	(Sample preservation handling procedures, etc.)	
= MG			<u> </u> S	XX	ŽΧ	X	\$ X	斌		+	Alleria	
	0837		<u> </u>		X	X	X	X		1,	All singles in brassor standers Seed lines.	
	0859	8-7-4	<u> </u>	-+-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$ \longleftrightarrow $		++		\prod	Seed lines.	
5	0904	8-7-5	S		 分		+	++	+	1,	HOLD all	
	0910	8-7-6	. 5		N'	X I	+	+	-	+	- Surples praing	
	0922	B-7-7 B-76RP	- S		1	Z				1	surples pading analysis requisit	
7 /	108	66 GRB	3 S 5		 	4		\prod	<u> </u>	I		
$\rightarrow \bot$	1115	B-6-1	15	XX	XX	\exists	+	\forall		++'	(3 week)	
5-4			2 5.	T	汝	1	X	**	-	1-1-1	1 TAT /	
{ 	[[33]	B-6-3 B-6-4	3 5	11	攻			1	+	1		
7 11	138	D-1C	f S S		XX	4		口			Contact Mike	
		B-6-6	6 5	++-	**************************************	}+	+-				Cortact Mike Mc 6 cine (510) 874-3288	
	1156	B-6-=	7 5	++	十冷	#	+++	-	++		(5/0) 874-3288	
		B-3-	I S		XX	辻	X	X	+	+		
			2 5	\$\lambda \times	XX	I	X	X		7	All suples on (is in its Chests	
			3 5	++-	XX	<u>. </u>	11	XI_			Chests	
(][3	346	8-3-5	= 13+	++-	₩	+	++	-	1	4	Two ice clests	
/ 13	350 0	B-3-6	5 5	++-	校	++	++	+	++	+	Total /	
	107	B-3-7	7 5		XX		++	+	++	+		
7	1077 120 \	B-3-8	5	1	X		工			7		
	20 1	VCP EQ R	> W X	XX			++			6/	Amber 6 kos liter	
7		0, 0	* VV	+++			+-	+-	-45	괴	Amber Glastic	
					+	-	-	+-	-	-		
							-	TOTA		+	T=6°C	
							NUI	MBER C TAINER	OF 1:3	21		
	ID BY:	DATE/TIME	RECEIVED BY: (Signature)		RELINC	DUISHED		T	DATE/	TIME	RECEIVED BY:	
2016	रीप	Z 1625			(Signatu	re)			ı	· ((Signature)	
_	SHIPMENT	T:	SHIPPED BY :		COURIE							
	ess-		(Signature)	!	(Signatu				RECEIV (S ignan 1	VED FO	OR LAB BY : DATE/TIME	
<u> </u>	<u> </u>	GENISX	10-1 1111				. ·				= 5/15/9>	
Ç	K CL		ATR BILL					rance (Calif. 9	0503	Tel. (310) 618-8889 Fax: (310) 618-081	

	ANALYSIS REQUEST FORM DUE 6-17-93
CLIENT NAME:	WCC/ Carter Park
CKY CONTROL NO.:	93 E064
REQUESTED BY:	4. 4 chuie
DATE:	6/10/93
LOGGED BY:	Ceulie Chaver
CKY CONTROL NO.	CLIENT SAMPLE ID COMMENTS
3E064-2 V E064-3 V E064-4 V E064-30 V E064-21 V E064-9 V E064-9 V	B-3-4 B-3-5 2-3-6 D-3-3

EPA METHOD 8140 ORGANOPHOSPHOROUS PESTICIDES

CLIENT: Woodward Clyde Consultants DATE REC'D: 05/15/93
PROJECT: Carter Park DATE EXTRACTED: 05/18/93
SAMPLE ID: B-3-2 DATE ANALYZED: 05/26/93
CONTROL NO: 93E064-18 MATRIX: Soil

PARAMETERS (8140)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Dichlorovos	ND	50
Phosdrin	ИD	50
Ethoprop	ND	50
Naled	ND	100
Phorate	ND	50
Demeton	ND	100
Diazinon	ND	50
Disulfoton	ND	. 50
Methyl parathion	ND	50
Ronnel	ND	50
Chlorpyriphos	ND	50
Fenthion	ND	50 .
Merphos	ND	50
Stirophos	ND	100
Tokuthion	ND	100
Fensulfothion	ND	100
Suprofos	ND	50
Azinphos Methyl	ND	500
	ND	100
Coumaphos	,	
% Surrogate Rec.		Accept. Range
Triphenol Phosphate	65	(20-140)

EPA METHOD 8140 ORGANOPHOSPHOROUS PESTICIDES

Woodward Clyde Consultants DATE REC'D: CLIENT: DATE EXTRACTED: 05/18/93 Carter Park PROJECT: DATE ANALYZED: 05/26/93 B-3-1 SAMPLE ID: Soil MATRIX: CONTROL NO: 93E064-17

PARAMETERS (8140)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Dichlorovos Phosdrin Ethoprop Naled Phorate Demeton Diazinon Disulfoton Methyl parathion Ronnel Chlorpyriphos Fenthion Merphos Stirophos Tokuthion	ND N	50 50 100 50 100 50 50 50 50 50 50 100
Fensulfothion Suprofos Azinphos Methyl Coumaphos % Surrogate Rec.	ND ND ND	50 500 100 Accept. Range
Triphenol Phosphate	88 	(20-140) ====================================

Woodward Clyde Consultants DATE REC'D: 05/15/93 CLIENT: PROJECT: Carter Park DATE EXTRACTED: 05/17/93 SAMPLE ID: VCPEQB DATE ANALYZED: 05/22/93

CONTROL NO: 93E064-25

PARAMETERS (8150)	RESULTS (ug/L)	DETECTION LIMIT (ug/L)
2,4-D	ND	0.5
2,4-DB	ND	0.5
2,4,5-T	ND	0.1
2,4,5-TP (Silvex)	ND	0.1
Dicamba	ND	0.5
Dichloroprop	ND	0.5
Dinoseb	ND	0.1
Dalapon	ND	•1.0
MCPA	ND	200
MCPP	ND	200
% Surrogate Recovery	115	20-140

EPA METHOD 8140 ORGANOPHOSPHOROUS PESTICIDES

CLIENT: Woodward Clyde Consultants DATE REC'D: 05/15/93
PROJECT: Carter Park DATE EXTRACTED: 05/18/93
SAMPLE ID: Method Blank DATE ANALYZED: 05/26/93
CONTROL NO: 93E064-Blk MATRIX: Soil

PARAMETERS (8140)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Dichlorovos	ND	50
Phosdrin	ND	50
Ethoprop	ND	50
Naled	ND	100
Phorate	ND	50
Demeton	ND	100
Diazinon	ND	50
Disulfoton	ND	4 50
Methyl parathion	ND	50
Ronnel	ND	. 50
Chlorpyriphos	ND	50
Fenthion	ND	50
Merphos	ND	50
Stirophos	ND	100
Tokuthion	ND	100
Fensulfothion	ND	100
Suprofos	ND	50
Azinphos Methyl	ND	500
Coumaphos	ND	100
% Surrogate Rec.		Accept. Range
Triphenol Phosphate	106	(20-140)

CLIENT: Woodward Clyde Consultants DATE REC'D: 05/15/93
PROJECT: Carter Park DATE EXTRACTED:05/19/93

SAMPLE ID: B-7-1 DATE ANALYZED: 05/22/93

CONTROL NO: 93E064-1 MATRIX: Soil

PARAMETERS (8150)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
2,4-D	ND	5
2,4-DB	ND	5
2,4,5-T	ND	2
2,4,5-TP (Silvex)	ND	2
Dicamba	ND	5
Dichloroprop	ND	5
Dinoseb	ND	2
Dalapon	ND	4 10
MCPA	ND	4000
MCPP	ND	4000
% Surrogate Recovery	122	20-140

CLIENT: Woodward Clyde Consultants
PROJECT: Carter Park
SAMPLE ID: Method Blank
CONTROL NO: 93E064

DATE REC'D: 05/15/93
DATE EXTRACTED: 05/17/93
DATE ANALYZED: 05/22/93
MATRIX: Water

PARAMETERS (8150)	RESULTS (ug/L)	DETECTION LIMIT (ug/L)
2,4-D	ND	0.5
2,4-DB	ND	0.5
2,4,5-T	ND	0.1
2,4,5-TP (Silvex)	ND	0.1
Dicamba	ND	0.5
Dichloroprop	ND	0.5
Dinoseb	ND	0.1
	ND	41. 0
Dalapon	ND	200
MCPP	ND	200
% Surrogate Recovery	111	20-140

CLIENT: Woodward Clyde Consultants DATE REC'D: 05/15/93

CLIENT: WOOdward Clyde Consditation

PROJECT: Carter Park

DATE EXTRACTED: 05/19/93

DATE ANALYZED: 05/22/93

SAMPLE ID: B-3-1 DATE ANALIZED: 05/22/
CONTROL NO: 93E064-17 MATRIX: Soil

DETECTION LIMIT RESULTS (uq/kq) (ug/kg) **PARAMETERS** (8150) 5 ND 2,4-D 5 ND 2,4-DB 2 ND 2,4,5-T 2 ND 2,4,5-TP (Silvex) ND Dicamba 5 ND Dichloroprop 2 ND Dinoseb • 10 ND Dalapon 4000 ND MCPA 4000 ND MCPP 20-140 132 % Surrogate Recovery

Woodward Clyde Consultants DATE REC'D: 05/15/93 DATE EXTRACTED: 05/19/93 Carter Park PROJECT: DATE ANALYZED: 05/22/93 SAMPLE ID: B-6-1 MATRIX: Soil CONTROL NO: 93E064-10

PARAMETERS (8150)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
2,4-D	ND	5
2,4-DB	ND	5
2,4,5-T	ND	2
2,4,5-TP (Silvex)	ND.	2
Dicamba	ND	5 .
Dichloroprop	ND .	5
Dinoseb	ND	2
Dalapon	ND	• 10
MCPA	ND	4000
MCPP	ИД	4000
% Surrogate Recovery	132	20-140

DATE REC'D: Woodward Clyde Consultants 05/15/93 CLIENT: DATE EXTRACTED: 05/19/93 PROJECT: Carter Park DATE ANALYZED: 05/22/93 SAMPLE ID: Method Blank

Soil MATRIX: CONTROL NO: 93E064

PARAMETERS (8150)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
2,4-D 2,4-DB 2,4,5-T 2,4,5-TP (Silvex) Dicamba Dichloroprop Dinoseb Dalapon MCPA MCPP	ND	5 5 2 2 5 5 2 • 10 4000 4000
% Surrogate Recovery	60	20-140

DATE REC'D: 05/15/93 Woodward Clyde Consultants CLIENT: DATE EXTRACTED: 05/19/93

Carter Park PROJECT: DATE ANALYZED: 05/22/93 SAMPLE ID: B-3-2

Soil MATRIX: CONTROL NO: 93E064-18

PARAMETERS (8150)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
2,4-D	ND	5
2,4-DB	ND	5
2,4,5-T	ND	2
2,4,5-TP (Silvex)	ND	2
Dicamba	ND	5 ·
Dichloroprop	ND	5
Dinoseb	ND	2
Dalapon	ND	• 10
MCPA	ND	4000
MCPP	ND	4000
% Surrogate Recovery	128	20-140

Woodward-Clyde Consultants DATE COLLECTED: 05/14/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/15/93 PROJECT: DATE EXTRACTED: 93E064 05/18/93 BATCH NO.: DATE ANALYZED: SAMPLE ID: B-6-1 05/19/93 CONTROL NO.: 93E064-10 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE: NA_

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Antimony Arsenic** Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury*	(mg/kg) 15 5 2.5 .75 1 2.5 2.5 1 5.05	(mg/kg) ND ND 206 ND ND 63.7 6.77 49 12.4 ND
Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	2.5 2.5 15 1 20 2.5 5	ND 49.2 ND ND ND 75.1 62.7

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/14/93 CLIENT: DATE RECEIVED: 05/15/93 Carter Park - 93C0243A PROJECT: 05/18/93 DATE EXTRACTED: 93E064 BATCH NO.: DATE ANALYZED: 05/19/93 B-7-1 SAMPLE ID: Soil CONTROL NO.: 93E064-01 MATRIX: DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Antimony Arsenic** Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury* Molybdenum Nickel Selenium Silver	15 5 2.5 .75 1 2.5 2.5 2.5 2.5 1 5 .05 2.5 2.5	ND 11.6 100 ND ND 77.3 10.6 70.1 9.87 ND
Thallium Vanadium Zinc	20 2.5 5	72.1 76.5

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

Woodward-Clyde Consultants CLIENT: DATE COLLECTED: 05/14/93 Carter Park - 93C0243A PROJECT: DATE RECEIVED: 05/15/93 BATCH NO.: 93E064 DATE EXTRACTED: 05/18/93 SAMPLE ID: B-3-2 DATE ANALYZED: 05/19/93 CONTROL NO.: 93E064-18 MATRIX: Soil % MOISTURE: DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Antimony	15	ND
Arsenic**	5	
and the second s		8.1
Barium	2.5	.244
Beryllium	.75	ND.
Cadmium	1	ND
Chromium	2.5	60.5
Cobalt	2.5	9.2
Copper	1	38.5
Lead	5	10.9
Mercury*	.05	0.06
Molybdenum	2.5	• ND
Nickel	2.5	44.5
Selenium	15	ND
Silver	1	ND
Thallium	20	ND.
Vanadium	2.5	66.7
Zinc	5	326

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

Woodward-Clyde Consultants CLIENT: DATE COLLECTED: 05/14/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: 05/15/93 93E064 DATE EXTRACTED: BATCH NO.: 05/18/93 B-3-1 DATE ANALYZED: SAMPLE ID: 05/19/93 CONTROL NO.: 93E064-17 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE: NA

	Det Limit	RESULT
Element	(mg/kg)	(mg/kg)
Antimony	15	ND
Arsenic**	. 5	18.8
Barium	2.5	224
Beryllium	.75	DM
Cadmium	1	ND
Chromium	2.5	59.1
Cobalt	2.5	4.78
Copper	. 1	78.3
Lead	_ 5	13.2
Mercury*	.05	ND
Molybdenum	2.5	• ND
Nickel	2.5	30.6
Selenium	15	ND
Silver	1	ND
Thallium	20	ND
Vanadium	2.5	67.2
Zinc	5	299

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

EPA 9045 Hq

Woodward Clyde Consultants DATE REC'D: 05/15/93 CLIENT: DATE EXTRACTED: 05/24/91 Carter Park PROJECT: DATE ANALYZED: 05/24/93 CONTROL NO: 93E064

MATRIX:

RESULTS DETECTION LIMIT SAMPLE ID: CONTROL NO: (pH Unit) (pH Unit) 0.10 6.85 93E064-1* B-7-1 0.10 7.00 93E064-2* B - 7 - 20.10 7.69 93E064-3 B - 7 - 30.10 7.71 93E064-4 B - 7 - 40.10 7.51 93E064-5 B-7-5 0.10 7.50 B-7-6 93E064-6 6.34 0.10 93E064-8 B-7GRB 0.10 6.44 93E064-9 B-6GRB 0.10 6.95 93E064-10* B-6-1 .0.10 7.59 93E064-11* B-6-2 0.10 93E064-12 7.90 B-6-3 7.87 0.10 93E064-13 B - 6 - 40.10 7.54 93E064-14 B-6-5 0.10 93E064-15 7.80 B-6-6 0.10 3.87 93E064-17* B-3-1 5.58 0.10 93E064-18* B-3-2 0.10 7.08 93E064-19* B - 3 - 30.10 7.59 93E064-20 B - 3 - 40.10 93E064-21 7.66 B-3-5 7.72 0.10 93E064-22 B - 3 - 60.10 7.78

* Date Analyzed: 05/18/93

93E064-23

B - 3 - 7

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: NA PROJECT: Carter Park - 93C0243A DATE RECEIVED: NA

BATCH NO.: 93E064 DATE EXTRACTED: 05/18/93
SAMPLE ID: METHOD BLANK DATE ANALYZED: 05/19/93

CONTROL NO.: 93E064-BLK MATRIX: Soil DILUTION FACTOR: 1

	Det Limit	RESULT
Element	(mg/kg)	(mg/kg)
Antimony	15	ND
Arsenic**	5	ND
Barium	2.5	ND
Beryllium	.75	ND
Cadmium	1	ND
Chromium	2.5	ND
Cobalt	2.5	ND
Copper	· 1	ND
Lead	5	ND
Mercury*	.05	ND
Molybdenum	2.5	. ND
Nickel	2.5	ND
Selenium	15	ND
Silver	1	ND
Thallium	20	ND
Vanadium	2.5	ND
Zinc	5	ND
aric	-	

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO.:

93E064

DATE RECEIVED:

05/15/93

SAMPLE ID:

B-7-1

DATE EXTRACTED:

05/18/93

CONTROL NO.:

93E064-01

DATE ANALYZED:

05/19/93

ACCESSION:

93E057 93E064

Parameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECR (%)
Antimony	ND	100	38.7	39+
Arsenic**	11.6	100	150	138+
Barium	100	100	390	290+
Beryllium	ND	100	94	94
Cadmium	ND	100	93.2	. 93
Chromium	77.3	100	155	7.8
Cobalt	10.6	100	95.9 ,	85
Copper	70.1	100	164	94
Lead	9.87	100	102	92
Mercury*	ND	0.87	0.95	109
Molybdenum	ND	100	82.4	82
Nickel	61.2	100	153	91
Selenium	ND	100	ND	0+
Silver	ND	100	89.7	90
Thallium	ND	100	115	115
Vanadium	72.1	100	155	83
Zinc	76.5	100	163	87

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

⁺ Outliner

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

BATCH NO.:

93E064

METHOD BLANK

DATE RECEIVED:

NA

SAMPLE ID: CONTROL NO.:

93E048-BLK

DATE EXTRACTED: 05/18/93

DATE ANALYZED:

05/19/93

ACCESSION:

93E064 93E048 93E057

Parameter	· SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY
		·		
Antimony	ND	100	96.8	97
Arsenic**	ND	100	107	107
Barium	ND	100	97.9	98
Beryllium	ND	100	96.3	96
Cadmium	ND	100	97.1	97
Chromium	ND	100	100	100
Cobalt	ND	100	99.5	99
Copper	ND	100	99.2 .	99
Lead	ND	100	97.9	98
Molybdenum	ND	100	98.8	99
Nickel	ND	100	99.3	9 9
Selenium	ND	100	104	104
Silver	ND	100	89.9	90
Thallium	ND	100	94.8	95
Vanadium	ND	100	99.7	100
Zinc	ND	100	96.9	97

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA LABORATORY CONTROL SAMPLE ANALYSIS

LIENT: ROJECT: Woodward-Clyde Consultants

Carter Park - 93C0243A

ETHOD:

EPA 3050/6010

ATRIX:

ATCH NO .:

93E064

DATE RECEIVED:

NA

AMPLE ID:

ERA 215

DATE EXTRACTED:

05/18/93

ONTROL NO.:

93E048-LCS

DATE ANALYZED:

05/19/93

CCESSION:

93E048

93E057 93E064

arameter	FOUND VALUE (mg/kg)	TRUE VALUE (mg/kg)	ACCEPTANCE RANGE
	30.2	21.3	9.0 - 130
ntimony	29.3	34.2	13 - 51
rsenic**	106	97.4	· 68 - 127
arium	58.6	58.1	35 - 87
eryllium	78	70.3	35 - 112
admium	202	182	82 - 255
hromium		120	66 - 180
obalt	124	92.7	46 - 139
opper	97.1	44.5	* 20 - 65
ead	44.6	13.7	7.5 - 21
ercury*	11.6		25 - 74
olybdenum	53.3	45	68 - 212
ickel	141	137	
elenium	. 30	33.1	—
ilver	72.1	64.4	26 - 113
hallium	118	140	70 - 210
anadium	44.7	40.1	28 - 54
inc	89.9	78.2	39 - 121

EPA METHOD 7471 *Analyzed by GFAA

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

ETHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO.:

93E064

DATE RECEIVED: 0

05/15/93 05/18/93

SAMPLE ID: CONTROL NO.: B-7-1 93E064-01

DATE ANALYZED:

05/19/93

ACCESSION:

93E057 93E064

Parameter	SAMPLE RESULT (mg/kg)	DUP SAMPLE RESULT (mg/kg)		RPD RESULT (%)
		ND		0
Antimony	ND			
Arsenic**	11.6	9.36		21+
Barium	100	187		61+
Beryllium	ND	ND		0
Cadmium	ND	ND		0
Chromium	77.3	60.1		25+
Cobalt	10.6	12.7		18
Copper	70.1	70.9	•	1
Lead	9.87	10.1		3
Mercury*	ND	ND		0
olybdenum	ND	ND		0
nickel	61.2	73.9		19
Selenium	ND	ND		0
Silver	ND	ND		0
Thallium	ND	ND		0
Vanadium	72.1	51.4		34+
Zinc	76.5	76		1

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

⁺ Outliner

QUALITY CONTROL DATA

CLIENT:

Woodward Clyde Consultants

PROJECT:

Carter Park

CONTROL NO:

93E064

METHOD

EPA 8080

MATRIX:

Soil

DATE ANALYZED: 05/24/93

SAMPLE ID:

93E064-1

PARAMETER	SAMPLE <u>RESULTS</u> (ug/kg)	AMOUNT <u>SPIKED</u> (ug/kg)	% REC.	DUP. <u>% REC.</u>	ACCEPT. CRITERIA	RPD	<u>% RPD</u> LIMITS
gamma-BHC	ND	16.67	100	81	46-127	21	50
Heptachlor	ND	16.67	125	97	35-130	25	31
Aldrin	ND	16.67	119	105	34-132	12	43
Dieldrin	ND	33.33	112	95	31-134	16	38
Endrin	ND	33.33	117	98	42-139	18	45
DDT	ND	33.33	120	102	23-134	16	50

METHOD

EPA 8080

MATRIX:

Soil

DATE ANALYZED: 05/24/93 SAMPLE ID:

Method Blank

PARAMETER	AMOUNT <u>SPIKED</u> (ug/kg)	% REC.	ACCEPT. CRITERIA	
gamma-BHC	16.67	93	50-150	
Heptachlor	16.67	.102	50-150	
Aldrin	16.67	120	50-150	
Dieldrin	33.33	119	50-150	
Endrin	33.33	124	50-150	
DDT	33.33	128	50-150	
		======		====

METHOD

EPA 608

MATRIX:

Water

DATE ANALYZED: 05/24/93

SAMPLE ID:

Method Blank

<u>PARAMETER</u>	SAMPLE <u>RESULTS</u> (ug/L) (AMOUNT <u>SPIKED</u> ug/L)	% REC.	DUP. % REC.	ACCEPT. CRITERIA	<u>RPD</u>	<u>%RPD</u> LIMITS
gamma-BHC Heptachlor Aldrin Dieldrin Endrin DDT	ND ND ND ND ND	50 50 50 100 100	77 93 92 108 112 118	94 112 112 114 113 115	56-123 40-131 40-120 52-126 56-121 38-127	19 18 19 5 1	15 20 22 18 21 27

OUALITY CONTROL DATA

CLIENT:

Woodward Clyde Consultants

PROJECT:

Carter Park

CONTROL NO:

93E064

METHOD:

EPA 9045

DATE ANALYZED:

05/24/93

MATRIX:

Soil

SAMPLE ID:

PARAMETER

93E064-9

DUP.

SAMPLE

SAMPLE

RESULT

RESULT (pH unit) %RPD

(pH unit)

рН

6.59

METHOD:

EPA 9045

DATE ANALYZED:

05/24/93

MATRIX:

Soil

SAMPLE ID:

93E064-23

DUP.

SAMPLE

SAMPLE

PARAMETER

RESULT

RESULT

(pH unit)

(pH unit)

рН

7.78

7.82

1

%RPD

QUALITY CONTROL DATA

CLIENT:

Woodward Clyde Consultants

PROJECT:

Carter Park

CONTROL NO:

93E064

METHOD

EPA 8150

MATRIX:

Soil

DATE ANALYZED: 05/15/93

SAMPLE ID:

Method Blank

MOIING						
	•	•	$\overline{}$	T 1	73.1	7
	Δ	M			·N	

PARAMETER	SPIKED (ug/kg)	% REC.	ACCEPT. CRITERIA	
2,4-D Silvex	250 100	75 93	20-140 20-140	

METHOD

EPA 8150

MATRIX:

Water

DATE ANALYZED: 05/22/93

SAMPLE ID: Method Blank

PARAMETER	SAMPLE RESULTS (ug/L)	AMOUNT SPIKED (ug/L)	% REC.	ACCEPT. CRITERIA	•
2,4-D Silvex	ИD	250 100	`86 92	10-140 10-140	

METHOD

EPA 8150

MATRIX:

Soil

DATE ANALYZED: 05/24/93

SAMPLE ID: 93E064-1

PARAMETER	SAMPLE <u>RESULTS</u> (ug/kg)	AMOUNT <u>SPIKED</u> (ug/kg)	% REC.	DUP. % REC.	ACCEPT. CRITERIA	RPD	%RPD LIMITS
2,4-D	ND	250	69	74	10-140	7	50
Silvex	ND	100	67	60	10-140	10	50

QUALITY CONTROL DATA

CLIENT:

Woodward Clyde Consultants

PROJECT:

Carter Park

CONTROL NO:

93E064

EPA 8140 METHOD

DATE ANALYZED: 05/26/93

MATRIX:

Soil

SAMPLE ID:

Method Blank

	$\lambda M \cap$	TTNT

PARAMETER	SPIKED (ug/kg)	% REC.	ACCEPT. CRITERIA	
Phorate	.67	109	40-140	
Disulfoton	.67	100	40-140	

METHOD

EPA 8140

DATE ANALYZED: 05/26/93

MATRIX:

SAMPLE ID:

Method Blank

PARAMETER	SAMPLE RESULTS (ug/L)	AMOUNT SPIKED (ug/L)	% REC.	DUP. % REC.	ACCEPT. CRITERIA	<u>RPD</u>	<u>%RPD</u> LIMITS
Phorate	ND	0.02	118	110	30-140	7	50
Disulfoton	ND	0.02	104	101	30-140		50

METHOD

EPA 8140

DATE ANALYZED: 05/26/93

MATRIX:

Soil

SAMPLE ID:

93E064-1

PARAMETER	SAMPLE RESULTS (ug/kg)	AMOUNT <u>SPIKED</u> (ug/kg)	% REC.	DUP. <u>% REC</u>	. ACCEPT. CRITERIA	RPD	%RPD LIMITS
Phorate* Disulfoton	ND ND	0.67 0.67	0 37	0 38	30-140 30-140	0 3	50 50
% Surrogate Rec.			105	89		16	

Phorate was not recovered from the sample spike or spike duplicate. However, the surrogate recoveries were 105 and 89% respectively and LCS met the QC requirements. No corrective action was taken, matrix effect was suspected.

C K Y incorporated Analytical Laboratories

Date: 05/26/93

93E048

Woodward-Clyde Consultants 500-12th Street, Suite 100 Oakland, CA 94607

Attn: Mr. Michael McGuire

Subject: Laboratory Report

Project: Carter Park #93C0243A

Enclosed is the laboratory report for samples received on 05/12/93. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. The data reported includes:

Method

No. of Analysis

EPA 9045 EPA 3050/6010 50 Soils 9 Soils

The results are summarized on eighteen pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Kam Y. Pang, Ph.D. Laboratory Director

P.S. - All analyses requested for the above referenced project have been completed. Therefore, unless instructed, the remaining portions of the samples will be disposed of after fifteen (15) days from the date of this report.

EPA 9045 pH

CLIENT: Woodward-Clyde DATE REC'D: 05/12/93
PROJECT: Carter Park #93C0243A DATE EXTRACTED: 05/17/93
CONTROL NO: 93E048 DATE ANALYZED: 05/17/93
MATRIX: Soil

SAMPLE ID:	CONTROL NO:	RESULTS (pH Unit)	DETECTION LIMIT (pH Unit)
B-15-2	93E048-02	7.10	0.10
B-15-3	93E048-03	6.35	0.10
B-15-4	93E048-04*	7:43	0.10
B-15-5	93E048-05	7.58	0.10
B-15-6	93E048-06	7.75	0.10
B-15-7	93E048-07	7.49	0.10
B-15-8	93E048-08	7.37	0.10
B-15-9	93E048-09	7.26	0.10
B-16-1	93E048-10	9.49	0.10
B-16-2	93E048-11*	7.14	0.10
B-16-3	93E048-12*	6.99	0.10
B-16-4	93E048-13	6.81	0.10
B-16-6	93E048-15	8.08	0.10
B-16-7	93E048-16	7.59	0.10
B-16-8	93E048-17	7.47	0.10
B-19-1	93E048-19	7.67	0.10
B-19-2	93E048-20*	3.65	0.10
B-19-4	93E048-22	4.10	0.10
B-19-6	93E048-24	7.10	0.10
B-19-7	93E048-25	7.56	0.10
B-18-1	93E048-28	8.08	0.10
B-18-2	93E048-29*	6.39	0.10
B-18-4	93E048-31	7.03	0.10
B-18-5	93E048-32	7.57	0.10
B-18-6	93E048-33	7.43	0.10
B-18-7	93E048-34	7.56	0.10
B-17-1	93E048-36	7.87	0.10
B-17-2	93E048-37*	6.73	0.10
B-17-4	93E048-39	7.76	0.10
B-17-5	93E048-40	7.89	0.10
B-17-6	93E048-41	7.94	0.10
B-20-1	93E048-43	7.61	0.10
B-20-2	93E048-44*	7.37	0.10

^{*} Samples extracted & analyzed on 05/14/93

EPA 9045 pН

Woodward-Clyde Carter Park #93C0243A 05/12/93 CLIENT: 05/17/93 05/17/93 DATE EXTRACTED: PROJECT: DATE ANALYZED: CONTROL NO: 93E048 Soil MATRIX:

SAMPLE ID:	CONTROL NO:	RESULTS (pH Unit)	DETECTION LIMIT (pH Unit)
B-20-3	93E048-45	7.48	0.10
B-20-4	93E048-46	8.13	0.10
B-20-5	93E048-47	8.10	0.10
B-20-6	93E048-48	7.79	0.10
B-20-7	93E048-49	7.92	0.10
B-14-1	93E048-51	7.22	0.10
B-14-2	93E048-52*	7.90	0.10
B-14-3	93E048-53	11.03	0.10
B-14-4	93E048-54	7.39	0.10
B-14-5	93E048-55	7.57	0.10
B-14-6	93E048-56	7.67	0.10
B-14-7	93E048-57	7.74	0.10
B-13-1	93E048-60*	7.66	0.10
B-13-2	93E048-61	7.56	0.10
B-13-4	93E048-63	7.93	0.10
B-13-5	93E048-64	8.05	0.10
B-13-6	93E048-65	8.04	0.10

^{*} Samples extracted & analyzed on 05/14/93

DATE COLLECTED: 05/10/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 05/12/93 Carter Park - 93C0243A PROJECT: 05/18/93 DATE EXTRACTED: 93E048 BATCH NO.: 05/19/93 DATE ANALYZED: B-15-4 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-04 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Antimony Arsenic** Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury* Molybdenum Nickel Selenium Silver Thallium Vanadium	15 5 2.5 .75 1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	ND ND 156 ND ND 64.3 12.4 81.4 9.61 ND ND 57 ND ND ND
Zinc		

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/10/93 CLIENT: DATE RECEIVED: 05/12/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 05/18/93 93E048 BATCH NO.: 05/19/93 DATE ANALYZED: B-16-2 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93E048-11 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Antimony Arsenic** Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury* Molybdenum Nickel Selenium Silver Thallium	15 5 2.5 .75 1 2.5 2.5 1 5 .05 2.5 2.5 15 120 2.5	ND ND 240 ND ND 63 10.2 40.7 8.87 ND
Vanadium Zinc	5	52.4

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/10/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 05/12/93 PROJECT: DATE EXTRACTED: 05/18/93 93E048 BATCH NO.: DATE ANALYZED: 05/19/93 B-16-3 SAMPLE ID: Soil CONTROL NO.: 93E048-12 MATRIX: DILUTION FACTOR: 1 % MOISTURE: NA

	Det Limit	RESULT
Element	(mg/kg)	(mg/kg)
Antimony	15	ND
Arsenic**	5	ND
Barium	2.5	148
Beryllium	.75	ND
Cadmium	1	ND
Chromium	2.5	52.4
Cobalt	2.5	8.91
Copper	1	38.7
Lead	5	6.97
Mercury*	.05	ND
Molybdenum	2.5	• ND
Nickel	2.5	39.2
Selenium	15	ND
Silver	1	ND
Thallium	20	ND
Vanadium	2.5	43.9
Zinc	5	49.7

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: 05/10/93
PROJECT: Carter Park - 93C0243A DATE RECEIVED: 05/12/93
BATCH NO.: 93E048 DATE EXTRACTED: 05/18/93
SAMPLE ID: B-19-2 DATE ANALYZED: 05/19/93

CONTROL NO.: 93E048-20 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
3-ti-ony	15	ND
Antimony	5	ND
Arsenic**		114
Barium	2.5	
Beryllium	.75	ND
Cadmium	1	1.8
Chromium	2. 5	72.5
Cobalt	2.5	8.12
Copper	1	58.7
Lead	· 5	20.2
Mercury*	.05	0.11
Molybdenum	2.5	• ND
Nickel	2.5	34.5
Selenium	, · · 15	ND
Silver	1	ND
Thallium	20	ND
Vanadium	2.5	64
Zinc	5	72.4

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

05/10/93 DATE COLLECTED: Woodward-Clyde Consultants CLIENT: 05/12/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: 05/18/93 DATE EXTRACTED: 93E048 BATCH NO.: DATE ANALYZED: 05/19/93 B-18-2 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-29 DILUTION FACTOR: 1 NA % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Antimony	15 5	ND ND
Arsenic** Barium	2.5 .75	184 ND
Beryllium Cadmium Chromium	1 2.5	ND 90.5
Cobalt Copper	2.5	9.2 54
Lead Mercury*	. 05	7.47 0.15 • ND
Molybdenum Nickel	2.5 2.5 15	54.7 ND
Selenium Silver	1 1 20	ND ND
Thallium Vanadium Zinc	2.5 5	74.7 68.4

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

DATE COLLECTED: 05/11/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: Carter Park - 93C0243A 05/12/93 PROJECT: DATE EXTRACTED: 05/18/93 93E048 BATCH NO.: DATE ANALYZED: 05/19/93 SAMPLE ID: B-17-2 CONTROL NO.: 93E048-37 MATRIX: Soil DILUTION FACTOR: 1 NA ... * MOISTURE:

Det Limit RESULT (mg/kg) Element (mg/kg) 15 ND Antimony 5 ND Arsenic** 250 2.5 Barium ND .75 Beryllium ND 1 Cadmium 2.5 73.9 Chromium 13.2 2.5 Cobalt 46.4 1 Copper 10.4 5 Lead 0.21 .05 Mercury* 2.5 . ND Molybdenum 73.3 2.5 Nickel 15 ND Selenium ND 1 Silver ND 20 Thallium 73.8 2.5 Vanadium 67 5 Zinc

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

DATE COLLECTED: 05/11/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 05/12/93 Carter Park - 93C0243A PROJECT: 05/18/93 DATE EXTRACTED: BATCH NO.: 93E048 DATE ANALYZED: 05/19/93 B-20-2 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-44 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
	15	ND
Antimony	15 5	5.14
Arsenic**		137
Barium	2.5	
Beryllium	.75	ND
Cadmium	1	ND
Chromium	2.5	59.7
Cobalt	2.5	6.22
	1	66.1
Copper	_ 5	13.6
Lead		ND
Mercury*	.05	ND
Molybdenum	2.5	-
Nickel	2.5	49.1
Selenium	15	ND
Silver	1	ND
Thallium	20	ND
	2.5	51.7
Vanadium		73.2
Zinc	5	73.2

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 05/11/93 CLIENT: DATE RECEIVED: 05/12/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 05/18/93 93E048 BATCH NO.: DATE ANALYZED: 05/19/93 SAMPLE ID: B-14-2 MATRIX: Soil CONTROL NO.: 93E048-52 DILUTION FACTOR: 1 % MOISTURE: NA

RESULT Det Limit (mg/kg) (mg/kg) Element 15 ND Antimony 5 5.89 Arsenic** 2.5 239 Barium .75 ND Beryllium ND 1 Cadmium 50.9 2.5 Chromium 4.79 2.5 Cobalt 1 34.5 Copper 484 5 Lead .05 0.07 Mercury* . ND 2.5 Molybdenum 2.5 33.1 Nickel 15 ND Selenium ND 1 Silver ND 20 Thallium 49.6 Vanadium 2.5 65.6 5 Zinc

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

DATE COLLECTED: Woodward-Clyde Consultants 05/11/93 CLIENT: DATE RECEIVED: 05/12/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 05/18/93 93E048 BATCH NO.: DATE ANALYZED: 05/19/93 B-13-1 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93E048-60 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Antimony Arsenic** Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury* Molybdenum Nickel Selenium Silver	(mg/kg) 15 5 2.5 .75 1 2.5 2.5 2.5 1 5 .05 2.5 2.5 15 120	(mg/kg) ND 96.6 514 ND 1.13 49.6 7.86 49.4 1160 0.25 ND 35.7 ND ND
Thallium Vanadium Zinc	2.5 5	67.9 515

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: NA PROJECT: Carter Park - 93C0243A DATE RECEIVED: NA

BATCH NO.: 93E048 DATE EXTRACTED: 05/18/93
SAMPLE ID: METHOD BLANK DATE ANALYZED: 05/19/93

CONTROL NO.: 93E048-BLK MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

·	Det Limit	RESULT
Element	(mg/kg)	(mg/kg)
Antimony	15	ND
Arsenic**	5	ND
Barium	2.5	ND
Beryllium	.75	ND
Cadmium	1	ND
Chromium	2.5	ND
Cobalt	2.5	ND
Copper	1	ND
Lead	· 5	ND
Mercury*	.05	ND
Molybdenum	2.5	→ ND
Nickel	2.5	ND
Selenium	15	ND
Silver	1	ND
Thallium	20	ND
Vanadium	2.5	ND
Zinc	. 5	ND

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO .: SAMPLE ID:

CONTROL NO.:

93E048 B-15-4 93E048-04 DATE RECEIVED: DATE EXTRACTED:

05/12/93 05/18/93

DATE ANALYZED:

05/19/93

ACCESSION:

93E048

Parameter	SAMPLE RESULT (mg/kg)	DUP SAMPLE RESULT (mg/kg)	RPD RESULT (%)
Parameter			
Antimony	ND	ND	0
Arsenic**	ND	ND	. 0
Barium	156	177	13
Beryllium	ND ·	ND	0
Cadmium	ND	ND	. 0
Chromium	64.3	67.1	4
Cobalt	12.4	9.61	. 25
Copper	81.4	50.6	47
Lead	9.61	9.89	3
Mercury*	ND	ND	0
Molybdenum	ND	ND	0
Nickel	57	53.2	7
Selenium	ND	ND	0
Silver	ND	ND	0
Thallium	ND	ND	0
Vanadium	52.8	52.4	1
Zinc	75	59.7	23

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

Carter Park - 93C0243A

ROJECT:

EPA 3050/6010

METHOD: MATRIX:

Soil

BATCH NO.: SAMPLE ID: 93E048 B-15-4

DATE RECEIVED: DATE EXTRACTED:

05/12/93 05/18/93

CONTROL NO.:

93E048-04

DATE ANALYZED:

05/19/93

ACCESSION:

93E048

Parameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY.
Parameter Antimony Arsenic** Barium Beryllium Cadmium Chromium Cobalt Copper Lead fercury* Molybdenum				(%) 37 112 110 97 95 98 95 48 98 94 84 100
Nickel Selenium Silver Thallium Vanadium	ND ND ND 52.8 75	100 100 100 100 100	41.4 88.1 108 151 145	41 88 108 99 70

^{*} EPA METHOD 7471

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO.:

93E048

DATE RECEIVED:

NA

SAMPLE ID:

METHOD BLANK

DATE EXTRACTED: 05/18/93

CONTROL NO.:

93E048-BLK

DATE ANALYZED:

05/19/93

ACCESSION:

93E064 93E048 93E057

Parameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY. (%)
	ND	100	96.8	97
Antimony		100	107	107
Arsenic**	ND	100	97.9	98
Barium	ND	100	96.3	96
Beryllium	ND	100	97.1	97
Cadmium	ND		100	100
Chromium	ND	100	99.5	99
Cobalt	ND	100		99
Copper	ND	100	99.2	98
Lead	ND	100	97.9) 99
Molybdenum	ND	100	98.8	
Nickel	ND	100	99.3	99
Selenium	ND	100	104	104
Silver	ND	100	89.9	90
Thallium	ND	100	94.8	95
Vanadium	ND	100	99.7	. 100
Zinc	ND	100	96.9	97

^{**}Analyzed by GFAA

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A DATE RECEIVED: 06/25/93 PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: B-25-7 DATE ANALYZED: 06/29/93 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-07 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	6.04
Lead	5	6.62
Zinc	5	53.8

DATE COLLECTED: Woodward-Clyde Consultants 06/24/93 CLIENT: DATE RECEIVED: 06/25/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B - 24 - 1SAMPLE ID: MATRIX: CONTROL NO.: 93F128-08 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	9.2
Lead	5	ND
	5	177
Zinc	5	1//

06/24/93 Woodward-Clyde Consultants DATE COLLECTED: CLIENT: DATE RECEIVED: 06/25/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: 06/29/93 DATE ANALYZED: SAMPLE ID: B-24-2 MATRIX: Soil CONTROL NO.: 93F128-09 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	34.2 10.7 51.7

Woodward-Clyde Consultants CLIENT: DATE COLLÉCTED: 06/24/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: 06/25/93 DATE EXTRACTED: BATCH NO.: 93F128 06/28/93 SAMPLE ID: B-24-3 DATE ANALYZED: 06/29/93 CONTROL NO.: 93F128-10 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	8.7
Lead	5	5.86
Zinc	5	44.1

Woodward-Clyde Consultants DATE COLLECTED: CLIENT: DATE RECEIVED: 06/25/93 Carter Park - 93C0243A DATE EXTRACTED: 06/28/93 PROJECT: 93F128 BATCH NO.: 06/29/93 DATE ANALYZED: B - 24 - 4SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-11 DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	6.5 5.87 46.8

^{**}Analyzed by GFAA

			*
CLIENT: PROJECT: BATCH NO.: SAMPLE ID: CONTROL NO.: % MOISTURE:		DATE COLLECTED: DATE RECEIVED: DATE EXTRACTED: DATE ANALYZED: MATRIX: DILUTION FACTOR:	06/24/9 06/25/93 06/28/93 06/29/93 Soil

Element	Det Limit (mg/kg) 	RESULT (mg/kg)
Arsenic**	5	10.3
Lead	5	ND
Zinc	5	52.1

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 06/25/93 Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 SAMPLE ID: B-23-1Soil CONTROL NO.: 93F128-13 MATRIX: DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	12.6
Lead	5	1100
Zinc	5	113

Woodward-Clyde Consultants DATE COLLECTED: 06/24/93 CLIENT: 06/25/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: 06/28/93 DATE EXTRACTED: 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-23-2 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93F128-14 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5 5	6.04 1310
Lead Zinc	5	73.1

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: 06/24/93
PROJECT: Carter Park - 93C0243A DATE RECEIVED: 06/25/93
BATCH NO.: 93F128 DATE EXTRACTED: 06/28/93
SAMPLE ID: B-23-3 DATE ANALYZED: 06/29/93

CONTROL NO.: 93F128-15 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5 ·	ND
Lead	5	10.4
Zinc	5.	38.7

DATE COLLECTED: Woodward-Clyde Consultants 06/24/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 06/25/93 PROJECT: DATE EXTRACTED: 06/28/93 BATCH NO.: 93F128 DATE ANALYZED: 06/29/93 B-23-4 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93F128-16 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	6.21
Zinc	5	37.8

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: 06/24/93 Carter Park - 93C0243A PROJECT: DATE RECEIVED: 06/25/93 93F128 BATCH NO.: DATE EXTRACTED: 06/28/93 B-22-1 DATE ANALYZED: SAMPLE ID: 06/29/93

CONTROL NO.: 93F128-17 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	6.81
Lead	5	115
Zinc	5	133

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 06/24/93 CLIENT: Carter Park - 93C0243A DATE RECEIVED: 06/25/93 PROJECT: DATE EXTRACTED: 93F128 06/28/93 BATCH NO.: DATE ANALYZED: 06/29/93 SAMPLE ID: B-22-2 MATRIX: CONTROL NO.: 93F128-18 Soil DILUTION FACTOR: 1

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	5.59
Lead	. 5	319
Zinc	5	42.4

^{**}Analyzed by GFAA

Woodward-Clyde Consultants DATE COLLECTED: 06/24/93 CLIENT: 06/25/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-22-3 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-19

% MOISTURE: NA DILUTION FACTOR: 1

Element.	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5	ND 18 47.9

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: 06/25/93 Carter Park - 93C0243A PROJECT: 06/28/93 DATE EXTRACTED: 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-22-4 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-20 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	8.81 ND 68.3

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: 06/24/93

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: 06/24/93
PROJECT: Carter Park - 93C0243A DATE RECEIVED: 06/25/93
BATCH NO.: 93F128 DATE EXTRACTED: 06/28/93
SAMPLE ID: B-21-2 DATE ANALYZED: 06/29/93

CONTROL NO.: 93F128-23 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	91
Zinc	. 5	56.7

^{**}Analyzed by GFAA

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: 06/25/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: 06/29/93 DATE ANALYZED: B-21-3 SAMPLE ID: Soil MATRIX: CONTROL NO.: 93F128-24 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead Zinc	5 5 5 5	ND 111 60.1

^{**}Analyzed by GFAA

DATE COLLECTED: 06/24/93 CLIENT: Woodward-Clyde Consultants DATE RECEIVED: PROJECT: Carter Park - 93C0243A 06/25/93 DATE EXTRACTED: 06/28/93 BATCH NO.: 93F128 DATE ANALYZED: 06/29/93 SAMPLE ID: B-21-4 CONTROL NO.: 93F128-25 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	· 5	5.89
Lead	5	8.61
Zinc	5 ·	41.4

^{**}Analyzed by GFAA

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: 06/25/93 Carter Park - 93C0243A DATE RECEIVED: PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: 06/29/93 DATE ANALYZED: SAMPLE ID: B-21-6 Soil MATRIX: CONTROL NO.: 93F128-27 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead	5 · 5 · 5 ·	ND 5.68 47

**Analyzed by GFAA

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: Carter Park - 93C0243A 06/25/93 PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-26-1 SAMPLE ID:

CONTROL NO.: 93F128-28 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	. 5	6.91
Lead	5	12.6
Zinc	5	83

^{**}Analyzed by GFAA

		:=========	
CLIENT: PROJECT: BATCH NO.: SAMPLE ID: CONTROL NO.:	Woodward-Clyde Consultants Carter Park - 93C0243A 93F128 B-26-2 93F128-29	DATE RECEIVED: DATE EXTRACTED: DATE ANALYZED: MATRIX:	06/24/93 06/25/93 06/28/93 06/29/93 Soil
		DILUTION FACTOR:	1
% MOISTURE:	NA	=======================================	

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic** Lead	5 5 5	ND 8.07 54.5

^{**}Analyzed by GFAA

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: 06/25/93 DATE RECEIVED: Carter Park - 93C0243A PROJECT: DATE EXTRACTED: 06/28/93 93F128 BATCH NO.: DATE ANALYZED: 06/29/93 B-26-3 SAMPLE ID: CONTROL NO.: 93F128-30 MATRIX: Soil DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	8.09
Zinc	5	44.4

^{**}Analyzed by GFAA

DATE COLLECTED: 06/24/93 Woodward-Clyde Consultants CLIENT: DATE RECEIVED: Carter Park - 93C0243A 06/25/93 PROJECT: 06/28/93 DATE EXTRACTED: 93F128 BATCH NO.: 06/29/93 DATE ANALYZED: SAMPLE ID: B-26-4 MATRIX: Soil CONTROL NO.: 93F128-31 DILUTION FACTOR: 1 % MOISTURE:

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5 5	ND 6.83
Lead Zinc	5	51.7

^{**}Analyzed by GFAA

CLIENT: Woodward-Clyde Consultants DATE COLLECTED: NA PROJECT: Carter Park - 93C0243A DATE RECEIVED: NA

BATCH NO.: 93F128 DATE EXTRACTED: 06/28/93
SAMPLE ID: METHOD BLANK 1 DATE ANALYZED: 06/29/93

SAMPLE ID: METHOD BLANK 1 DATE ANALYZED: 06/29/93 CONTROL NO.: 93F128-BLK1 MATRIX: Soil

% MOISTURE: NA DILUTION FACTOR: 1

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	ND
Zinc	5	ND

**Analyzed by GFAA

DATE COLLECTED: Woodward-Clyde Consultants CLIENT: Carter Park - 93C0243A DATE RECEIVED: NA PROJECT: DATE EXTRACTED: 06/28/93 BATCH NO.: 93F128 DATE ANALYZED: 06/29/93 METHOD BLANK 2 SAMPLE ID: MATRIX: Soil CONTROL NO.: 93F128-BLK2 DILUTION FACTOR: 1 % MOISTURE: NA

Element	Det Limit (mg/kg)	RESULT (mg/kg)
Arsenic**	5	ND
Lead	5	ND
Zinc	5	ND

**Analyzed by GFAA

QUALITY CONTROL DATA

CLIENT:
PROJECT:

Woodward Clyde Consultants Carter Park/93C0243A-2000

CONTROL NO:

93F128

METHOD:

EPA 9045

DATE ANALYZED:

06/28/93

MATRIX:

Soil

SAMPLE ID:

PARAMETER

93F128-23

DUP.

SAMPLE

RESULT

SAMPLE RESULT

(pH unit)

(pH unit) (pH

рН

7.29

7.33

0

%RPD

METHOD: EPA

DATE ANALYZED:

EPA 9045 06/28/93

MATRIX:

Soil

SAMPLE ID:

93F128-23

DUP.

PARAMETER

SAMPLE SAMPLE

RESULT (pH unit)

RESULT (pH unit)

Hq

5.91

5.92

0

%RPD

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

EPA 3050/6010

METHOD:

MATRIX:

Soil

BATCH NO .:

93F128 B-25-1

DATE RECEIVED: DATE EXTRACTED: 06/25/93 06/28/93

SAMPLE ID: CONTROL NO .:

93F128-01

DATE ANALYZED:

06/29/93

ACCESSION:

93F128

Parameter	SAMPLE	DUP SAMPLE	RPD
	RESULT	RESULT	RESULT
	(mg/kg)	(mg/kg)	(%)
Arsenic** Lead Zinc	3.53	5.32	40 +
	8.0	5.37	39 +
	65.5	54.9	18

Analyzed by GFAA

Arsenic and Lead RPD's were out of the control limit of 20%. Either non-homogeneous samples or the fact that these results were very close to the detection limit would have created this error. Since the matrix spike and the RPD of laboratory control samples were within the QC limits. No corrective action.

CKY QUALITY CONTROL DATA DUPLICATE SAMPLE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

ROJECT:

Carter Park - 93C0243A

riETHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO .: SAMPLE ID: 93F128 B-21-2

DATE RECEIVED: DATE EXTRACTED: 06/28/93

06/25/93

CONTROL NO.:

93F128-23

DATE ANALYZED: 06/29/93

ACCESSION:

93F128

Parameter	SAMPLE RESULT (mg/kg)	DUP SAMPLE RESULT (mg/kg)	RPD RESULT (%)
Arsenic**	4.65	7.75 88.7	50 +
Lead Zinc	91 56.7	59.9	5

**Analyzed by GFAA

Arsenic RPD was out of the control limit of 20%. A non-homogeneous sample was suspected since the matrix spike and the RPD of laboratory control samples were within the QC limits. No corrective action.

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

EPA 3050/6010

METHOD:

MATRIX:

Soil

BATCH NO.:

93F128

DATE RECEIVED:

06/25/93

SAMPLE ID:

B-21-2

DATE EXTRACTED:

06/28/93

CONTROL NO.:

93F128-23

DATE ANALYZED:

06/29/93

ACCESSION:

93F128

Parameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY. (%)
Arsenic**	4.65	100	118	113
Lead	91	100	152	61 +
Zinc	56.7	100	149	92

**Analyzed by GFAA

Lead spike recovery was out of the control limit of 75 - 125%. A matrix effect was suspected since the other matrix spike and the laboratory control samples were within the QC limits. No corrective action.

CKY QUALITY CONTROL DATA SPIKE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

ROJECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO.:

93F128 B-25-1 DATE RECEIVED:

06/25/93

SAMPLE ID: CONTROL NO.: 93F128-01

DATE EXTRACTED: DATE ANALYZED:

06/28/93 06/29/93

ACCESSION:

93F128

Parameter	SAMPLE RESULT (mg/kg)	SPIKE CONC. (mg/kg)	SPIKE RESULT (mg/kg)	SPIKE RECRY. (%)
Arsenic**	3.53	100	111	107
Lead	8.0	100	97.7	90
Zinc	65.5	100	140	75

^{**}Analyzed by GFAA

CKY QUALITY CONTROL DATA LABORATORY CONTROL SAMPLE ANALYSIS

CLIENT:

Woodward-Clyde Consultants

PROJECT:

Carter Park - 93C0243A

METHOD:

EPA 3050/6010

MATRIX:

Soil

BATCH NO.:

93F128

DATE RECEIVED:

SAMPLE ID:

LCS 216

DATE EXTRACTED:

06/28/93

CONTROL NO.:

93F128-LCS1 and LCS2

DATE ANALYZED:

06/29/93

ACCESSION:

93F128

Parameter	TRUE VALUE (mg/kg)	LCS1 FOUND VALUE (mg/kg)	LCS2 FOUND VALUE (mg/kg)	RPD (%)	ACCEPTANCE RAN (mg/kg)
Arsenic**	67.7	84.2	90.3	7	41 - 105
Lead	100	82.0	80.8	1	55 - 140
Zinc	197	163	162	1	98 - 280

Analyzed by GFAA

	-, 0	13F	128 0	ИE	7-	/-	93				. (-1	44		برا	<u>_</u>	(#4)	1,	P	_
)	V * .		dward-Clyde (1 Street, Suite 100, Oakl (510) 893-360	and, CA 9					Chain of Custody Record												
			Couter Par							ANA	1	SES		Ta	7	8					
	SAMPI	ERS: (S	ignature)		Irix Ior, (A)ir					Sapl	Jes	>	(000)	### ## ## ## ## ## ## ## ## ## ## ## ##		Containe		(Sa	ARKS		
	DATE	TIME	SAMPLE NUMBE	ΕR	Sample Matrix (S)oil, (W)ater, (A)ir	EPA Method	EPA Method	EPA Method	EPA Method	Hora	pende	2	Pb 221	THE CONTROL		Number of Containers		han	dling res, etc.)	
1	90493	0934	8-25-1		S					X			X	\bigcirc		I		A11 30	rle	<u></u>	
2	(0938	8-25-2		5					γ,			X	$\bigcirc\!$			•	All 30 In book	ss e	~	
3		0342	B-25-3		5					χ			\times	$\bigcirc\!$				Stank	وممد	tal	
4	_/_	0946	B-25-4		5					X				\downarrow	<u> </u>			2"50	" Di	res	ĺ
7	(0950	B-25-5		_ک					χ.	_		XX	\swarrow	<u>.</u>	1	,	1-11	.10	s- 1/2	D C
6	-	0957	B-25-6		S					Ϋ́	_		$\langle \chi \rangle$	\swarrow	<u> </u>		7	fold anding			
7	_/_	0958	B-25-7		<u>ڪ</u>					X	•		$\langle \chi \rangle$	X			pa	mang	Oma-	245/5	İ
8	(1031	B-24-1		<u>S</u>			-		\downarrow	_		$\langle \chi \rangle$	X	<u> </u>	1		Regu	لايب		
		1036	B-24-2		5					<u> </u>	_		XX	X	 	l				. 1	ł
/0	/-	120	8-24-3		5					X.	_		KX.	X	 	1		Send to M MCG 510)8	Post	.14	
[]	_	1ASZ	· b-24-9		<u>ئے</u>					<u>V</u>			KX.	X	 	(1 . 1		
/2	12	1059	8-24-5					_		<i>></i>	-		KX.	X	 			40 IA	upe	<u>_</u>	
17	13 1	131	8-23-1		5			- 1		$\langle \rangle$			X	X	 -	1		McE	2 vi	re	
1-1	-(-	140	8-23-2		5					V	-		\bigcirc	X		1	1	510/8	74-2	Z88	
12)	1205	B-23-3		5					\Diamond	\dashv	_	KX	X	 	1					
/6 17	-{	126	B-23-4		2				_	\Diamond	-		X	X	-	! !		\leq $_{\Lambda}$		\	
18	-									\bigcirc			X	X	-	1	1	5 d'	ω_{J})	
ł	_/_	1332	B-22-2 B-22-3		<u>5</u>				_	$\langle \cdot \rangle$	-		X	X	 	L		تىرىسە	T		
/9	-(1336								\Diamond			\otimes	X	 	1		TH	1/		
20 21	-)	1340	B-22-4		5					\Diamond	-		\sim	¥	<u> </u>	-		<u> </u>		•	
- 1	_/_	1403	8-22-5		5			_		$\langle \cdot $				+	-	1					
22	_	1434	B-21-1		5			_		$\langle \rangle$	-	······································		+	<u> </u>	1	A	M s	asl	s on	
23	-/-	1438	8-21- 2		5					♦	_		XX	X	-	,	1.0	le in	2000	دف	
24	-	1440	B-21-3						_	\Leftrightarrow			$\langle X \rangle$	\mathbb{X}		(th si chesi	₹. ¯		1
25	\rightarrow	1453	8-21-4		5			\dashv	_	Χļ		•	XX	¥X	<u> </u>	1.			`		
Z6		1456	B-21-5		5	$\vdash \vdash$		\dashv		\Diamond				+) ((C)		
27		1505	B-21-6		5				_	\Diamond			X	X	 	1					
28	V	1537	B-26-1		7	Ш								\sqrt{X}	<u> </u>						
					1	\int							NUI CON	TO' MBER TAIN!	TAL OF ERS	28			,		
	RELINOL (Signatur	JISHED BY	DATE/TIME	RECEIV (Signal)	ED B					LINC		1ED	BY:		DA	TE/TIM		RECEIVED (Signature)			
1	METHOR	OF SHIP		SHIPPE	DRV	<u>/</u> _			C	DURIE	<u>р</u> .				BC.	CEIVE) FOR	LAB BY :	1.50	TE/TIME	1
			_	(Signati	ure)	•				ignati					(Sig	nature) }	- TWO DI :		1 11:00	
	ALGI	UE	X 7510224013						<u> </u>						6	us	_		14	3 pu	

DUE 7-1-93 12:93F128 **Woodward-Clyde Consultants** Chain of Custody Record 500 12th Street, Suite 100, Oakland, CA 94607-4014 (510) 893-3600 PROJECT NO Carter Falk **ANALYSES** 9360243A-2000 Number of Containers REMARKS SAMPLERS: (Signal/10) (Sample Sample Matrix (S)oil, (W)ater, (preservation, EPA Method handling procedures, etc.) SAMPLE NUMBER DATE TIME B-26-Z Seepg 1.

Sad Results
to
Mike Mcbuire B-26-3 5 B-26-4 TOTAL NUMBER OF CONTAINERS Signature RECEIVED BY: DATE/TIME RELINQUISHED BY : RELINQUISHED BY: (Signature) (Signature) (Signature) DATE/TIME METHOD OF SHIPMENT : SHIPPED BY : (Signature) COURIER: RECEIVED FOR LAB BY : (Signature) (Signature) 6/20,11:01 PED EX aug 193 Au AIRBILL# 7510224013

ANALYTICAL SCHEDULE

Page :

: WOODWARD-CLYDE CONSULTANTS

Project # : 93C0243A

Project Name: NONE

ATI I.D.: 306330

Abalysis	Technique/Description
EPA 340.2 (FLUORIDE)	ELECTRODE
EPA 353.2 (NITRATE AS NITROGEN)	COLORIMETRIC
EPA 376.2 (SULFIDE)	COLORIMETRIC
EFA 6010 (ANTIMONY)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (BARIUM)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (BERYLLIUM)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (CALCIUM)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (CHROMIUM)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (COBALT)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (COPPER)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (IRON)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (LEAD)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (MAGNESIUM)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (MOLYBDENUM)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (NICKEL)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (POTASSIUM)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (SILVER)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (SODIUM)	INDUCTIVELY COUPLED ARGON PLASMA
FT 6010 (VANADIUM)	INDUCTIVELY COUPLED ARGON PLASMA
6010 (ZINC)	INDUCTIVELY COUPLED ARGON PLASMA
Era 7060 (ARSENIC)	ATOMIC ABSORPTION/GRAPHITE FURNACE
EPA 7131 (CADMIUM)	ATOMIC ABSORPTION/GRAPHITE FURNACE
EPA 7471 (NON AQUEOUS MERCURY)	ATOMIC ABSORPTION/COLD VAPOR
EPA 7740 (SELENIUM)	ATOMIC ABSORPTION/GRAPHITE FURNACE
EPA 7841 (THALLIUM)	ATOMIC ABSORPTION/GRAPHITE FURNACE
EPA 9012 (TOTAL CYANIDE)	COLORIMETRIC
EPA 9038 (SULFATE)	TURBIDIMETRIC
EPA 9045 (pH SOIL)	ELECTRODE
EPA 9253 (CHLORIDE)	TITRIMETRIC, SILVER NITRATE
METHOD 7-2.2, METHODS OF SOIL ANALYSIS(% MOISTURE)	GRAVIMETRIC
MOD EPA 9050 (ELECTRICAL CONDUCTIVITY)	ELECTRODE

рĦ

SULFIDE

SULFATE

GENERAL CHEMISTRY RESULTS

Pa.

: WOODWARD-CLYDE CONSULTANTS Client ATI I.D.: 306330 Project # : 93C0243A Project Name: NONE Date Date Matrix Sample Client ID Received Sampled 28-JUN-93 1 COURT-1 Units 1 MG/KG <5.0 CHLORIDE MG/KG <0.10 UMHOS/CM 2720 TOTAL CYANIDE ELECTRICAL CONDUCTIVITY MG/KG <5 FLUORIDE 8 9.56 % MOISTURE MG/KG <0.50 NITRATE AS NITROGEN

UNITS 3.0

MG/KG <0.20

MG/KG 2160

GENERAL CHEMISTRY - QUALITY CONTROL

DUP/MS

Page

Client : WOODWARD-CLYDE CONSULTANTS

Project # : 93C0243A

ATI I.D. : 30633

Project Name: NONE

-								
Parameters	REF I.D.	Units	Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	% Rec
* MOISTURE	306330-01	8	9.56	10.6	10	n/a	n/a	N/A
CHLORIDE	306330-01	MG/KG	<5.0	<5.0	0	44.0 :	40.0	110
ELECTRICAL CONDUCTIVITY	306330-01	•		2870	5	N/A	N/A	N/A
FLUORIDE	306317-02	MG/KG	<5	<5	0	4.1	5.0	82
NITRATE AS NITROGEN	306261-10	-		<0.50	0	10.9	10.0	109
SULFATE	306334-02	•		225	0	570	407	85
SULFIDE	306235-05			160	6	188	4.0	N/A*
TOTAL CYANIDE	306309-19			<0.10	0	2.3	2.2	105
pfi	306317-02	•		7.8	0	N/A	N/A	N/A

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

^{*}Y SAMPLE RESULT IS >4X SPIKED CONCENTRATION, THEREFORE SPIKE IS NOT DETECTABLE.

GENERAL CHEMISTRY - QUALITY CONTROL

BLANK SPIKE

Page 5

client : WOODWARD-CLYDE CONSULTANTS

Project # : 93C0243A

Project Name: NONE

ATI I.D. : 306330

Parameters	Blank Spike ID#	Units	Blank Result	Spiked Sample	Spike Conc.	Rec				
CHLORIDE FLUORIDE NITRATE AS NITROGEN SULFATE SULFIDE TOTAL CYANIDE	37401 37351 37349 37364 37318 37315	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	<5.0 <5 <0.50 <100 <0.20 <0.10	42.0 4.9 11.7 212 1.0 1.8	40.0 5.0 10.0 200 1.0 2.0	105 98 117 106 100				

% Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

SODIUM

·-- CKEL

D

YNOMITMA

SELENIUM

THALLIUM

VANADIUM

ZINC

METALS RESULTS

Page

: WOODWARD-CLYDE CONSULTANTS ATI I.D.: 30633 Project # : 93C0243A Project Name: NONE Matrix Sample Client ID Sampled Received 28-JUN-93 29-JUN-9 SOIL Units 1 ------MG/KG 5.9 SILVER MG/KG 397 ARSENIC MG/KG 612 BARIUM MG/KG <0.5 BERYLLIUM MG/KG 730 CALCIUM MG/KG <0.5 CADMIUM MG/KG <1.0 COBALT MG/KG 3.2 CHROMIUM MG/KG 48.3 COPPER MG/KG 23400 IRON MG/KG 4.72 MERCURY MG/KG 1140 POTASSIUM MG/KG 157 MAGNESIUM MG/KG 11.9 MOLYBDENUM MG/KG 525

MG/KG 1.1

MG/KG 594

MG/KG 2.9

MG/KG 47.7

MG/KG 0.9

MG/KG 291

MG/KG 10.7

METALS - QUALITY CONTROL

DUP/MS

Page 7

ATI I.D. : 306330

Client : WOODWARD-CLYDE CONSULTANTS

Project # : 93C0243A

Project Name: NONE

Project Name: NONE	REF I.D. Units Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	₹ Rec
ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MERCURY MOLYBDENUM NICKEL POTASSIUM SELENIUM SILVER SODIUM THALLIUM VANADIUM ZINC	306309-10 MG/KG 6.7 306317-02 MG/KG 1.7 306309-10 MG/KG 29.1 306309-10 MG/KG 29.5 306317-02 MG/KG <0.5 306309-10 MG/KG 2200 306309-10 MG/KG 8.3 306309-10 MG/KG 4.0 306309-10 MG/KG 8720 306309-10 MG/KG 433 306309-10 MG/KG 433 306309-10 MG/KG 4.72 306309-10 MG/KG 4.72 306309-10 MG/KG 9.9 306309-10 MG/KG 252 306317-02 MG/KG 2.4 306309-10 MG/KG 204 306309-10 MG/KG 204 306309-10 MG/KG 23.3 306309-10 MG/KG 23.3 306309-10 MG/KG 23.3	11.5 1.8 31.2 <0.5 <0.5 2350 8.7 4.6 34.1 9510 387 1700 3.78 1.0 10.2 279 2.5 <1.0 226 <1.0 27.8 97.1	53@R 6 7 0 0 7 5 14 3 9 11 10 22 0 3 10 4 0 10 0	50.5 46.7 127 47.1 51.2 N/A 54.5 95.8 81.9 N/A N/A N/A 93.5 58.1 520 31.1 40.5 896 31.6 116 137	49.1 49.8 98.2 49.1 49.8 491 49.1 98.2 49.1 246 0.95 98.2 49.1 246 29.9 49.1 246 29.9 49.1	89 90 100 96 103 N/A* 94 93 96 N/A* N/A* 97 95 98 109 96 8

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

^{*}V SAMPLE RESULT IS >4X SPIKED CONCENTRATION, THEREFORE SPIKE IS NOT DETECTABLE.

RPD LIMIT IS 67% FOR INORGANIC RESULTS LESS THAN TEN TIMES THE REPORTING DETECTION LIMIT.

METALS - QUALITY CONTROL

BLANK SPIKE

. Page (

: WOODWARD-CLYDE CONSULTANTS Client

Project # : 93C0243A

Project Name: NONE

ATI I.D. : 30633(

Parameters	Blank Spike ID	Units	Blank Result	Spiked Sample	Spike Conc.	₹ Rec
ANTIMONY	37410	MG/KG	<3.0	44.2	50.0	88
ARSENIC	37316	MG/KG	<1.0	47.3	50.0	95
BARIUM	37410	MG/KG	<0.5	89.1	100	89
BERYLLIUM	37410	MG/KG	<0.5	44.8	50.0	90
CADMIUM	37333	MG/KG	<0.5	53.1	50.0	106
CALCIUN	37410	MG/KG	<2.5	443	500	89
CHROMIUM	37410	MG/KG	<0.5	42.9	50.0	86
COBALT	37410	MG/KG	<1.0	89.6	100	90
COPPER	37410	MG/KG	1.2	45.6	50.0	89
IRON	37410	MG/KG	3.7	92.8	100	89
LEAD	37410	MG/KG	<1.5	44.7	50.0	89
MAGNESIUM	37410	MG/KG	<0.5	222	250	89
MERCURY	37365	MG/KG	<0.25	0.89	1.00	89
MOLYBDENUM	37410	MG/KG	<1.0	91.8	100	92
NICKEL	37410	MG/KG	<1.0	45.6	4 50.0	91
POTASSIUM	37410	MG/KG	<5.0	223	250	89
- ENIUM	37310	MG/KG	<1.0	30.5	30.0	102
VER	37410	MG/KG	<1.0	44.2	50.0	88
SUDIUM	37410	MG/KG	2.6	502	625	80
THALLIUM	37309	MG/KG	<1.0	43.4	50.0	87
VANADIUM	37410	MG/KG	<0.5	89.3	100	89
ZINC	37410	MG/KG	<1.0	42.4	50.0	85

[%] Recovery = (Spike Sample Result - Sample Result) *100/Spike Concentration RPD (Relative & Difference) = (Sample Result - Duplicate Result) *100/Average Result

SAMPLE CONDITION UPON RECEIPT CHECKLIST (FOR RE-ACCESSIONS, COMPLETE #7 THRU #9)		
Does this project require special handling according to NEESA Levels C, D, AFOEHL or CLP protocols?	YES	NO
If yes, complete a) thru c) a) Cooler temperature b) pH sample aliquoted: yes / no / n/a c) LOT #'s:		
2 Are custody seals present on cooler?	YES	NO
If yes, are seals intact?	YES	NO
3 Are custody seals present on sample containers?	YES	(2)
If yes, are seals intact?	YES	NO
4 Is there a Chain-Of-Custody (COC)*?	YES	NO
5 Is the COC* complete? Relinquished: yes/no Requested analysis: yes/no	YES	NO
6 Is the COC in agreement with the samples received? # Samples: yes/no Sample ID's: yes/no Matrix: yes/no # containers: yes/no	YÈS	NO
To the camples preserved correctly?	YES	NO
8 Is there enough sample for all the requested analyses?	YES	NO
9 Are all samples within holding times for the requested analyses?	(FES)	NO
10 Were the samples received cold?	YES	(NO
11 Were all sample containers received intact (ie. not broken, leaking, etc.)?	(ES)	NO
12 Are samples requiring no headspace, headspace free? NA	YES	NO
13 Are there special comments on the Chain of Custody which require client contact?	YES	(N/A)
14 If yes, was ATI Project Manager notified?	YES	NO
Describe "no" items: P) Sample is limited. (0) Sample sent in with no ice. Client aware of this per EH.	i box	
Was client contacted? yes / no	•	
If yes, Date: Name of Person contacted:		
Describe actions taken or client instructions:		
*Or other representative documents, letters, and/or shipping memos		

GENERAL CHEMISTRY RESULTS

Page

Client : WOODWARD-CLYDE CONSULTANTS
Project # : 93C0243A
Project Name: (NONE) ATI I.D.: 3070

Samp	le Client ID	Matrix	:	Date Sampled	Date Receive
1 2	CRACK 1 COURT 2	SOIL SOIL		08-JUL-93 08-JUL-93	09-JUL-5
Para	meter	Units 1	2		
nH		UNITS 1.5	2.8	. 4	

GENERAL CHEMISTRY - QUALITY CONTROL

DUP/MS

Page

: WOODWARD-CLYDE CONSULTANTS Client ATI I.D. : 30708 Project # : 93C0243A Project Name: (NONE) Dup RPD Result REF I.D. Units Sample RPD Spiked 8 Parameters Conc Rec Sample Result N/A N/A N/A 307084-02 UNITS 2.8 рĦ

% Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

ARSENIC MERCURY LEAD ZINC

METALS RESULTS

Page

client : WOODWARD-CLYDE CONSULTANTS
Project # : 93C0243A ATI I.D.: 30708 Project Name: (NONE) Date Date Sample Client ID Matrix Sampled # _____ WET EXTRACT WET EXTRACT COURT 2/WET 02 COURT 2/DI WET 02 08-JUL-93 09-JUL-9 08-JUL-93 Units 3 4 Parameter

> MG/L 8.8 <0.05 MG/L <0.005 <0.005 MG/L 0.4 <0.03 MG/L 4.1 3.3

METALS RESULTS

Page

: WOODWARD-CLYDE CONSULTANTS Client

: 93C0243A

ATI I.D.: 30708

Sample Client ID #	Matrix		Date Sampled	Date Received
1 CRACK 1 2 COURT 2	SOIL SOIL		08-JUL-93 08-JUL-93	09-JUL-9
Parameter	Units 1	2 .		
SILVER ARSENIC BARIUM BERYLLIUM CADMIUM COBALT CHROMIUM COPPER MERCURY MOLYBDENUM NICKEL LEAD ANTIMONY SELENIUM THALLIUM VANADIUM ZINC	MG/KG - MG/KG 14.4 MG/KG -	9.8 734 332 <0.5 <1.0@H 1.2 8.4 43.3 6.28 16.6 3.1 692 16.2 3.4 62.1 2.9	•	

DETECTION LIMIT ELEVATED DUE TO MATRIX INTERFERENCE

METALS - QUALITY CONTROL

DUP/MS

Client : WOODWARD-CLYDE CONSULTANTS

Project # : 93C0243A ATI I.D. : 3070

Pag.

Project Name: (NONE)

Parameters	REF I.D.	Units			RPD	Spiked	Spike	£
			Result	Result		Sample	Conc	Re⊂
ANTIMONY	307068-07	MG/KG	<3.0	<3.0	0	35.9	53.3	67
ARSENIC	307068-07	MG/KG	1.14	0.91	22@R	52.3	54.2	94
ARSENIC	307084-03	MG/L	8.8	8.5	3	57.6	50.0	98
ARSENIC	307084-04	MG/L	<0.05	<0.05	0	5.00	5.00	10(
BARIUM	307068-07	MG/KG	14.2	14.6	3	119	107	98
BERYLLIUM	307068-07	MG/KG	<0.5	<0.5	0	48.5	53.3	91
CADMIUM	307068-07	MG/KG	<0.5	<0.5	0	53.2	49.7	107
CEROMIUM	307068-07	MG/KG	8.0	8.3	4	53.4	53.3	85
COBALT	307068-07	MG/KG	3.4	3.6	6	99.8	107	90
COPPER	307068-07	MG/KG	12.9	13.0	1	62.5	53.3	93
LEAD	307068-07	MG/KG	19.1	19.6	3	66.6	53.3	89
LEAD	307084-03	MG/L	0.4	0.5	22@R	50.8	50.0	101
LEAD	307084-04	MG/L	<0.03	<0.03	0	5.27	5.00	105
MERCURY	307084-01	MG/KG	<0.25	<0.25	0	0.85	0.94	91
MERCURY	307084-03	MG/L	<0.005	<0.005	0	0.019	0.020	95
MERCURY	307084-04	MG/L	<0.005	<0.005	0	0.016	0.020	80
~YBDENUM	307068-07	MG/KG	<1.0	<1.0	0	95.5	107	89
CKEL	307068-07	MG/KG	5.2	5.3	2	53.0	53.3	90
SELENIUM	307068-07	MG/KG	1.8	1.8	0	34.5	32.5	101
SILVER	307068-07	MG/KG	<1.0	<1.0	0	40.1	53.3	75
THALLIUM	307068-07	MG/KG	<1.0	<1.0	0	58.4	54.2	108
VANADIUM	307068-07	MG/KG	28.5	28.2	1	123	107	88
ZINC	307068-07	MG/KG	37.9	38.5	2	83.2	53.3	85
ZINC	307084-03			3.8	8	52.6	50.0	97
ZINC	307084-04	MG/L	3.3	3.5	6	8.2	5.0	99
	· · ·	-, -	_		_			

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

R RPD LIMIT IS 67% FOR INORGANIC RESULTS LESS THAN TEN TIMES THE REPORTING DETECTION LIMIT.

METALS - QUALITY CONTROL

BLANK SPIKE

Page 8

98

100

ATI I.D.: 307084

: WOODWARD-CLYDE CONSULTANTS Client

Project # : 93C0243A

Project Name: (NONE)

ZINC

ZINC

ZINC

暑 Spiked Spike Blank Units Blank Parameters Rec Sample Conc. Spike ID# Result 50.0 46.2 37666 MG/KG <3.0 ANTIMONY 99 49.6 49.5 50.0 MG/KG <1.0 37691 ARSENIC 99 50.0 MG/L <0.5 37729 ARSENIC 99 5.00 4.93 MG/L <0.05 37731 ARSENIC 95 100 MG/KG <0.5 95.4 37666 BARIUM 94 50.0 MG/KG <0.5 46.8 37666 MG/KG <0.5 MG/KG <0.5 BERYLLIUM 104 50.0 52.1 37714 CADMIUM 89 50.0 44.5 37666 CHROMIUM 100 95 94.8 MG/KG <1.0 37666 COBALT 96 50.0 MG/KG <1.0 48.1 37666 COPPER 50.0 94 MG/KG <1.5 47.0 37666 LEAD 101 50.0 MG/L <0.3 50.7 37729 LEAD **4**5.00 104 5.22 MG/L <0.03 37731 LEAD 0.93 1.00 MG/KG <0.25 37723 MERCURY 0.018 0.020 MG/L <0.005 37724 MERCURY 1 0.020 0.022 MG/L <0.005 37725 MERCURY 94 100 MG/KG <1.0 93.9 37666 MOLYBDENUM 94 46.8 50.0 MG/KG <1.0 37666 NICKEL 94 30.0 28.1 MG/KG <0.25 37745 SELENIUM 101 50.0 50.4 MG/KG <1.0 37666 SILVER 91 50.0 MG/KG <1.0 45.7 37747 THALLIUM 92 100 MG/KG <0.5 92.2 37666 VANADIUM 88 50.0

MG/KG 2.2

<0.5

<0.05

MG/L

MG/L

46.2

48.8

5.0

50.0

5.0

37666

37730

37732

Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative & Difference) = (Sample Result - Duplicate Result)*100/Average Result

· ACCESSION #: 307084

INITIALS:

	SAMPLE CONDITION UPON RECEIPT CHECKLIST (FOR RE-ACCESSIONS, COMPLETE #7 THRU #9)		
1	Does this project require special handling according to NEESA Levels C, D, AFOEHL or CLP protocols?	YES	NO
	If yes, complete a) thru c)		
	a) Cooler temperature b) pH sample aliquoted: yes / no / n/a		
	c) LOT #'s:		
2	Are custody seals present on cooler?	YES	NO (OX
*	If yes, are seals intact?	YES	
3	Are custody seals present on sample containers?	YES	(4O
	If yes, are seals intact?	YES	NO
4	is there a Chain-Of-Custody (COC)*?	₹ ES	NO
5	Is the COC complete? Relinquished: (yes)no Requested analysis yes no	(YES)	NO
6	Is the COC' in agreement with the samples received? # Samples: ves/no Sample ID's: yes/no Matrix: ves/no # containers: yes/no	YES	NO
7	Are the samples preserved correctly?	YES	NO
8	Is there enough sample for all the requested analyses?	YES	NO
9	Are all samples within holding times for the requested analyses?	YES	NO
10	Were the samples received cold?	YES	NO
11	Were all sample containers received intact (ie. not broken, leaking, etc.)?	(YES)	NO
12	Are samples requiring no headspace, headspace free? (N/A)		NO
13	Are there special comments on the Chain of Custody which require client contact?	YES	N/A
14	If yes, was ATI Project Manager notified?	YES	NO
Desc	ribe "no" items:		
Was	client contacted? yes / no		
If yes	, Date: Name of Person contacted:		
Desc	ribe actions taken or client instructions:		
	other representative documents, letters, and/or shipping memos		

A77 # 307084

Woodward-Clyde Consultants **Chain of Custody Record** 500 12th Street, Suite 100, Oakland, CA 94607-4041 (415) 893-3600 **ANALYSES** PROJECT NO. Number of Containers 9300243A REMARKS SAMPLERS: (Signature) EPA.Method-1007 (Sample preservation, handling procedures, etc.) SAMPLE NUMBER DATE TIME DECO Crock I * analyze 7830 Com = = iner Extracts unawyzed # As, Poly, To 5-day Results to Mize mulyune Eleun HOKS TOTAL NUMBER OF CONTAINERS RECEIVED BY : DATE/TIME RELINQUISHED BY RECEIVED BY : DATE/TIME RELINQUISHED BY : (Signature) (Signature) (Signature) RECEIVED FOR LAB BY : COURIER: SHIPPED BY : (Signature) (Signature) (Signature)

ATI 1.D.: 307393

August 16, 1993

WOODWARD-CLYDE CONSULTANTS 500 12TE STREET, SUITE 100 OAKLAND, CA 94607

Project Name: MINING SOIL : 93C0243A Project #

Attention: MICHAEL MCGUIRE

Analytical Technologies, Inc. has received the following sample(s):

Date Received	Quantity	Matrix
July 31, 1993	9	SOIL

The sample(s) were analyzed with EPA methodology or equivalent methods as specified in the enclosed analytical schedule. The symbol for "less than" indicates a value below the reportable tion limit. Please note that the Sample Condition Upon Receipt Checklist is included at the e. of this report.

The results of these analyses and the quality control data are enclosed.

PROJECT MANAGER

SAMPLE CROSS REFERENCE

Page 1

Client : WOODWARD-CLYDE CONSULTANTS

Report Date: August 16, 1993

Project # : 93C0243A

ATI I.D. : 307393

-	_	_	•	_	_	_	-	-	_	_	_	_		_	_		
ī	٠,	o	÷	e	c	£	Name	:	M	I	N	I	N	G		SOIL	

ATI ;	Client Description	Matrix	Date Collected
1 2 3 4 5	CRACK A CRACK B CRACK C CRACK D CRACK E CRACK E	SOIL SOIL SOIL SOIL SOIL SOIL	30-JUL-93 30-JUL-93 30-JUL-93 30-JUL-93 30-JUL-93
7 8 9	CRACK G CRACK H CRACK J	SOIL SOIL SOIL	30-JUL-93 30-JUL-93 30-JUL-93

---TOTALS---

Matrix	# Samples
SOIL	9

ATI STANDARD DISPOSAL PRACTICE

The sample(s) from this project will be disposed of in twenty-one (21) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

ANALYTICAL SCHEDULE

: WOODWARD-CLYDE CONSULTANTS

93C0243A ATI I.D.: 307393

Page 2

Project # : 93C0243A
Project Name: MINING SOIL

Client

Analysis	Technique/Description
FPA 376.2 (SULFIDE)	COLORIMETRIC
ΣPA 6010 (LEAD)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 6010 (ZINC)	INDUCTIVELY COUPLED ARGON PLASMA
EPA 7060 (ARSENIC)	ATOMIC ABSORPTION/GRAPHITE FURNACE
EPA 9038 (SULFATE)	TURBIDIMETRIC
EPA 9045 (pH SOIL)	ELECTRODE

GENERAL CHEMISTRY RESULTS

Page 3

ATI I.D.: 307393

: WOODWARD-CLYDE CONSULTANTS Client

Project # : 93C0243A

Project Name: MINING SOIL

Sample #	Client ID	м	atrix		Dat Sar	e mpled	Date Received
1 2 3 4 5	CRACK A CRACK B CRACK C CRACK D CRACK E	S S S	OIL OIL OIL		30: 30: 30:	-JUL-93 -JUL-93 -JUL-93 -JUL-93	31-JUL-93 31-JUL-93 31-JUL-93 31-JUL-93
Parame	 ter	Units 1	2	3		4	5
pH SULFID SULFAT		UNITS 2. MG/KG <1 MG/KG 24	.000 <1	L.00Q <	.9 1.002 20000	<1.000	1.5 <1.0@Q 294000

DETECTION LIMIT ELEVATED DUE TO LIMITED SAMPLE FOR ANALYSIS

GENERAL CHEMISTRY RESULTS

Page 4

Client : WOODWARD-CLYDE CONSULTANTS
Project # : 93C0243A

ATI I.D.: 307393

Project Name: MINING SOIL

Sample #	Client	ID		Matrix			Date Sampled	Date Received
6 7 8 9	CRACK C CRACK C CRACK C	3 E		SOIL SOIL SOIL			30-JUL-93 30-JUL-93 30-JUL-93 30-JUL-93	31-JUL-93 31-JUL-93 31-JUL-93 31-JUL-93
Paramet	ter		Units	6	7	8	9	
pa SULFIDI SULFATI				1.9 <1.0@Q 289000	1.5 <1.000 366000	1.6 <1.000 299000	1.4 <1.000 365000	

DETECTION LIMIT ELEVATED DUE TO LIMITED SAMPLE FOR ANALYSIS 62

GENERAL CHEMISTRY - QUALITY CONTROL

DUP/MS

Page 5

Client : WOODWARD-CLYDE Project # : 93C0243A Project Name: MINING SOIL	CONSULTANTS	·			ATI I.D. :	307393
Parameters	REF I.D. Units Sam	aple Dup sult Result	RPD	Spiked Sample	Spike Conc	Rec
SULFATE SULFATE SULFIDE pH pH	307373-02 MG/KG 957 307393-01 MG/KG 245 307393-02 MG/KG <1 307373-02 UNITS 8.2 307393-09 UNITS 1.6	000 24400 000 <1.000 2 8.2	3 0 0 0 0	2600 715000 <1.0 N/A N/A	1970 397000 19.9 N/A N/A	83 118 N/A*Y N/A N/A

% Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration RPD (Relative % Difference) = (Sample Result - Duplicate Result) *100/Average Result

RESULT NOT ATTAINABLE DUE TO SAMPLE MATRIX INTERFERENCE *Y

DETECTION LIMIT ELEVATED DUE TO LIMITED SAMPLE FOR ANALYSIS eQ

GENERAL CHEMISTRY - QUALITY CONTROL

BLANK SPIKE

Page 6

Client : WOODWARD-CLYDE CONSULTANTS

Project # : 93C0243A

ATI I.D. : 307393

Project Name: MINING SOIL

Parameters	Blank Units	Blank	Spiked	Spike	€
	Spike ID#	Result	Sample	Conc.	Rec
SULFATE	38484 MG/KG		216	200	108
SULFIDE	38431 MG/KG		3.4	4.0	85

[%] Recovery = (Spike Sample Result - Sample Result)*100/Spike Concentration
RPD (Relative % Difference) = (Sample Result - Duplicate Result)*100/Average Result

METALS RESULTS

Page 7

: WOODWARD-CLYDE CONSULTANTS

roject # : 93C0243A

ATI I.D.: 307393

Project Name: MINING SOIL

Client

ample #	Client ID	Matri	. x		Date Sampled	Date Received
L 2 3 1	CRACK A CRACK B CRACK C CRACK D CRACK D	SOIL SOIL SOIL SOIL SOIL			30-JUL-93 30-JUL-93 30-JUL-93 30-JUL-93	31-JUL-93 31-JUL-93 31-JUL-93 31-JUL-93 31-JUL-93
arame		Units 1	2	3	4	5
ARSENI LEAD ZINC	 C	MG/KG 29.6 MG/KG 16.1 MG/KG 6080	11.7 18.3 6790	23.0 28.2 6200	7.4 14.9 7990	33.0 9.3 8380

METALS RESULTS

Page 8

: WOODWARD-CLYDE CONSULTANTS Client

Project # : 93C0243A
Project Name: MINING SOIL

ATI I.D.: 307393

SEOJE	CC Name. Minimo Do					
sampl	e Client ID	Matrix			Date Sampled	Date Received
6 7 8	CRACK F CRACK G CRACK H CRACK J	SOIL - SOIL SOIL SOIL			30-JUL-93 30-JUL-93 30-JUL-93 30-JUL-93	31-JUL-93 31-JUL-93 31-JUL-93 31-JUL-93
Param	eter	Units 6	7	8		
ARSEN LEAD EINC	ic	MG/KG 8.4 MG/KG 35.1 MG/KG 4320	9.7 19.7 62 60	22.4 15.9 6110	25.7 18.5 5820	·

METALS - QUALITY CONTROL

DUP/MS

Page 9

ient : WOODWARD-CLYDE CONSULTANTS

ATI I.D. : 307393

roject # : 93C0243A

'roject Name: wining born								
Parameters	REF I.D.		Sample Result	Dup Result	RPD	Spiked Sample	Spike Conc	Rec
RSENIC	307393-09 307393-09 307393-09	MG/KG	18.5	22.3 20.3 5300	14 9 9	58.4 52.1 N/A	49.8 49.9 49.9	66 67 N/A*V

Recovery = (Spike Sample Result - Sample Result) *100/Spike Concentration

PD (Relative % Difference) = (Sample Result - Duplicate Result) *100/Average Result

V SAMPLE RESULT IS >4X SPIKED CONCENTRATION, THEREFORE SPIKE IS NOT DETECTABLE.